Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/N...Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图...为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图像特征,通过合并后图像特征采用余弦定理计算图像的相似度,从而找出匹配图像。实验表明,CUDA架构下可以实现图像的并行匹配,与CPU上串行匹配相比,时效性提高了百倍以上。展开更多
基金supported by the National Natural Science Foundation of China (No.11172134)the Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX13_132)
文摘Personal desktop platform with teraflops peak performance of thousands of cores is realized at the price of conventional workstations using the programmable graphics processing units(GPUs).A GPU-based parallel Euler/Navier-Stokes solver is developed for 2-D compressible flows by using NVIDIA′s Compute Unified Device Architecture(CUDA)programming model in CUDA Fortran programming language.The techniques of implementation of CUDA kernels,double-layered thread hierarchy and variety memory hierarchy are presented to form the GPU-based algorithm of Euler/Navier-Stokes equations.The resulting parallel solver is validated by a set of typical test flow cases.The numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform,which demonstrates that a GPU desktop can serve as a costeffective parallel computing platform to accelerate computational fluid dynamics(CFD)simulations substantially.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
文摘为解决目前已有的图像匹配算法不适用于对实时性要求很强的应用,提出了PLS(Partial Least Squares)与余弦定理相结合的并行化图像匹配算法。该算法在CUDA架构下,对图像矩阵分块,分块后每个小块图像存入共享存储器处理并提取每个小块图像特征,通过合并后图像特征采用余弦定理计算图像的相似度,从而找出匹配图像。实验表明,CUDA架构下可以实现图像的并行匹配,与CPU上串行匹配相比,时效性提高了百倍以上。