The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The qualit...The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The quality of the power received in the distribution system is altered because of the losses in the transmission system.The losses in the transmission system are mitigated using the FACTS(Flexible AC Transmission System)controller,among these controllers UPFC(Unified Power Flow Controller)plays a vital role in controlling the shunt and series reactive powers in the bus of the power system.The conventional topology of the UPFC consists of AC-DC converter and energy stored in the DC link and DC-AC converter injected a voltage in series to the bus which is to be controlled.Whereas a new topology based on matrix converter can replace the dual converters and perform the required task.The construction of 2-bus,7-bus and IEEE-14-bus power system is designed and modeled.MC-UPFC(Matrix Converter Based Unified Power Flow Controller)is designed and constructed.The MC-UPFC is the rich topology in the FACTS which is capable of controlling both the transmission parameters simultaneously with the switching technique of direct power control by the smooth sliding control which gives less ripple in the injecting control parameters such as control voltage(Vc)and voltage angle(α).By implementing MC-UPFC the real and reactive power can be controlled simultaneously and independently.The control techniques were designed based on the PID(Proportional Integral Derivative)with sliding surface power control,FLC(Fuzzy Logic Controller)and ANN(Artificial Neural Network)and the performances of Vc andαof the controllers are investigated.Hence the sliding surface and relevant control switching state of the MC can be controlled by the FLC which gives the robust and autonomous decision made in the selection of the appropriate switching state for the effective real power control in the power system.The work has been carried out in the MATLAB Simulink simulator which gives the finest controlling features and simple design procedures and monitoring of the output.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of secur...The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.展开更多
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP...On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.展开更多
Flexible alternating current transmission system(FACTS)components are used to utilize the electrical transmission lines at their optimum capacity.The best way to achieve this optimization is to manage the active and r...Flexible alternating current transmission system(FACTS)components are used to utilize the electrical transmission lines at their optimum capacity.The best way to achieve this optimization is to manage the active and reactive power flows.A unified power flow controller(UPFC)is one of the most significant devices developed for the effective control of power flows.Although conventional UPFC structures can be used to achieve this process,the expansion of power systems has led to the necessity of developing various UPFC devices.This paper focuses on an advanced real time control approach of UPFC for dynamic voltage regulation.The developed model is incorporated in the Gauss-Seidel(GS)power flow algorithm and the proposed method is validated on the IEEE-30 bus system that is designed under MATLAB/Simulink platform.As the proposed method was validated by comparing with the normal operating conditions,advantages were observed on two cases.In the first case,a generator outage is applied to system to observe behavior of proposed model in power loss conditions.In the second case,line fault conditions were used for observation.The results from testing the model for both cases prove that the approach has positive effects on dynamic power systems.展开更多
柔性交流输电系统(flexible alternative current transmission systems,FACTS)装置如混合式统一潮流控制器(hybrid unified power flow controller,HUPFC)可调节线路潮流,有效提升输电网络的传输容量。为解决传统HUPFC中使用机械式有...柔性交流输电系统(flexible alternative current transmission systems,FACTS)装置如混合式统一潮流控制器(hybrid unified power flow controller,HUPFC)可调节线路潮流,有效提升输电网络的传输容量。为解决传统HUPFC中使用机械式有载分接开关调压带来的诸多问题,文中提出基于全电力电子有载分接开关的快速电磁式HUPFC。首先,针对其工作特性进行研究,并提出抑制开关切换过程中产生过压的方法。然后,根据不对称级电压Sen变压器的工作点合成方式存在自由度,实现一种开关切换次数最少的抽头选择策略,并给出从潮流指令改变到开关切换调压的详细步骤。最后,在Simulink中搭建220 kV双回线路仿真模型,对比快速电磁式HUPFC与传统HUPFC的潮流调节过程及结果。结果表明,全电力电子开关在响应速度和降低调节过程中的功率波动等方面更具优势,验证了快速电磁式HUPFC的可行性。展开更多
A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selectio...A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.展开更多
随着大规模高比例新能源的接入,新型电力系统的安全运行面临静态电压稳定性的问题。文章提出使用统一潮流控制器(Unified Power Flow Controller,UPFC)提升新能源电网静态电压稳定性的方案,从系统静态电压稳定性方面评估UPFC发挥的控制...随着大规模高比例新能源的接入,新型电力系统的安全运行面临静态电压稳定性的问题。文章提出使用统一潮流控制器(Unified Power Flow Controller,UPFC)提升新能源电网静态电压稳定性的方案,从系统静态电压稳定性方面评估UPFC发挥的控制效能。首先详细分析了UPFC的结构及工作原理,并基于UPFC的等效功率注入模型得到电力系统潮流计算方程;其次基于潮流计算方程提出反映系统静态电压稳定的效能评估指标,计算分析接入不同容量新能源对系统静态电压的影响以及UPFC对系统薄弱节点静态电压的提升;最后通过仿真验证,安装UPFC后能明显地改善新能源电网薄弱节点的电压稳定问题。文中所提出的方法方便快捷,具有一定的实际应用价值。展开更多
The active power loop flow(APLF)may be caused by impropriate network configuration,impropriate parameter settings,and/or stochastic bus powers.The power flow controllers,e.g.,the unified power flow controller(UPFC),ma...The active power loop flow(APLF)may be caused by impropriate network configuration,impropriate parameter settings,and/or stochastic bus powers.The power flow controllers,e.g.,the unified power flow controller(UPFC),may be the reason and the solution to the loop flows.In this paper,the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC.Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition,the integrated power flow needs less iterations and calculation time.Besides,with wind power fluctuation,the interval power flow(IPF)is introduced into the integrated power flow,and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF.Compared with Monte Carlo simulation,the IPF has the similar accuracy but less time.展开更多
In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression f...In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.展开更多
The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be r...The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be regulated from 0 to the rated value. However,there would be relatively large harmonics in the output voltage if the voltage modulation ratio is small. In order to analyze the influence of MMC-UPFC on the harmonics of the power grid, the theoretical calculation method and spectra of the output voltage harmonics of MMC are presented. Subsequently, the calculation formulas of the harmonics in the power grid with UPFC are proposed. Based on it, the influence of UPFC on the grid voltage harmonics is evaluated, when MMC-UPFC is operated with different submodular numbers and voltage modular ratios. Eventually, the proposed analysis method is validated using digital simulation. The study results would provide guideline for the design and operation of MMC-UPFC project.展开更多
Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)device...Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)devices can effectively mitigate LFOs via stability control.We propose a novel method that mitigates FOs by shifting the resonant frequency.Based on the features of the linearized swing equation of a generator, a resonant frequency shift can be achieved by controlling the synchronous torque coefficient using a unified power flow controller(UPFC).Because of the resonance mechanism, the steady-state response of an FO can be effectively mitigated when the resonant frequency changes from the original one, which was close to the disturbance frequency.The principle is that a change in resonant frequency affects the resonance condition.Simulations are conducted in a single-machine infinite-bus(SMIB) system, and the simulation results verify that the method is straightforward to implement and can significantly mitigate FOs.The controller robustness when the resonant frequency is not accurately estimated is also analyzed in the simulations.展开更多
Control strategy of unified power flow controller(UPFC)utilizing dq decoupling control is deduced in this paper,which can closely follow the control orders of the active and reactive power.The subsynchronous resonance...Control strategy of unified power flow controller(UPFC)utilizing dq decoupling control is deduced in this paper,which can closely follow the control orders of the active and reactive power.The subsynchronous resonance(SSR)characteristics of a series compensated system equipped with UPFC are studied,and the results reveal that SSR characteristics of the system may vary significantly with UPFC in service or not.Consequently,supplementary subsynchronous damping controller(SSDC)for UPFC is proposed and investigated,and the effectiveness of the proposed SSDC is verified by damping torque analysis and time domain simulations.展开更多
文摘The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The quality of the power received in the distribution system is altered because of the losses in the transmission system.The losses in the transmission system are mitigated using the FACTS(Flexible AC Transmission System)controller,among these controllers UPFC(Unified Power Flow Controller)plays a vital role in controlling the shunt and series reactive powers in the bus of the power system.The conventional topology of the UPFC consists of AC-DC converter and energy stored in the DC link and DC-AC converter injected a voltage in series to the bus which is to be controlled.Whereas a new topology based on matrix converter can replace the dual converters and perform the required task.The construction of 2-bus,7-bus and IEEE-14-bus power system is designed and modeled.MC-UPFC(Matrix Converter Based Unified Power Flow Controller)is designed and constructed.The MC-UPFC is the rich topology in the FACTS which is capable of controlling both the transmission parameters simultaneously with the switching technique of direct power control by the smooth sliding control which gives less ripple in the injecting control parameters such as control voltage(Vc)and voltage angle(α).By implementing MC-UPFC the real and reactive power can be controlled simultaneously and independently.The control techniques were designed based on the PID(Proportional Integral Derivative)with sliding surface power control,FLC(Fuzzy Logic Controller)and ANN(Artificial Neural Network)and the performances of Vc andαof the controllers are investigated.Hence the sliding surface and relevant control switching state of the MC can be controlled by the FLC which gives the robust and autonomous decision made in the selection of the appropriate switching state for the effective real power control in the power system.The work has been carried out in the MATLAB Simulink simulator which gives the finest controlling features and simple design procedures and monitoring of the output.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.
基金supported in part by Science and Technology Projects of Electric Power Research Institute of State Grid Jiangsu Electric Power Co.,Ltd.(J2021171).
文摘The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.
文摘On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.
文摘Flexible alternating current transmission system(FACTS)components are used to utilize the electrical transmission lines at their optimum capacity.The best way to achieve this optimization is to manage the active and reactive power flows.A unified power flow controller(UPFC)is one of the most significant devices developed for the effective control of power flows.Although conventional UPFC structures can be used to achieve this process,the expansion of power systems has led to the necessity of developing various UPFC devices.This paper focuses on an advanced real time control approach of UPFC for dynamic voltage regulation.The developed model is incorporated in the Gauss-Seidel(GS)power flow algorithm and the proposed method is validated on the IEEE-30 bus system that is designed under MATLAB/Simulink platform.As the proposed method was validated by comparing with the normal operating conditions,advantages were observed on two cases.In the first case,a generator outage is applied to system to observe behavior of proposed model in power loss conditions.In the second case,line fault conditions were used for observation.The results from testing the model for both cases prove that the approach has positive effects on dynamic power systems.
文摘柔性交流输电系统(flexible alternative current transmission systems,FACTS)装置如混合式统一潮流控制器(hybrid unified power flow controller,HUPFC)可调节线路潮流,有效提升输电网络的传输容量。为解决传统HUPFC中使用机械式有载分接开关调压带来的诸多问题,文中提出基于全电力电子有载分接开关的快速电磁式HUPFC。首先,针对其工作特性进行研究,并提出抑制开关切换过程中产生过压的方法。然后,根据不对称级电压Sen变压器的工作点合成方式存在自由度,实现一种开关切换次数最少的抽头选择策略,并给出从潮流指令改变到开关切换调压的详细步骤。最后,在Simulink中搭建220 kV双回线路仿真模型,对比快速电磁式HUPFC与传统HUPFC的潮流调节过程及结果。结果表明,全电力电子开关在响应速度和降低调节过程中的功率波动等方面更具优势,验证了快速电磁式HUPFC的可行性。
基金supported by State Grid Corporation’s Science and Technology Project“Research and Demonstration of Technical Measures for Improving Voltage Supporting Capacity of Large-scale Urban Power Grid”(52094016000Y)
文摘A unified power flow controller(UPFC)combines the advantages of various flexible alternating current transmission system(FACTS)devices into a powerful format.Using a 500 kV power grid,this study evaluates the selection and use of a UPFC to improve transmission capacity.The"UPFC unit capacity control proportionality coefficient"is introduced to quantify the control effect of the UPFC,and an optimal calculation method for the UPFC capacity is presented.Following the proposal of a UPFC site selection process,the data of an existing power grid is used to conduct simulations.The simulation results show that the UPFC has a strong ability to improve transmission capacity,and its use is greatly advantageous.Additionally,by applying the proposed selection method,the control effect and economic benefits of the UPFC can be comprehensively considered during project site selection.These findings have a guiding significance for UPFC site selection in ultra-high voltage power grids.
文摘随着大规模高比例新能源的接入,新型电力系统的安全运行面临静态电压稳定性的问题。文章提出使用统一潮流控制器(Unified Power Flow Controller,UPFC)提升新能源电网静态电压稳定性的方案,从系统静态电压稳定性方面评估UPFC发挥的控制效能。首先详细分析了UPFC的结构及工作原理,并基于UPFC的等效功率注入模型得到电力系统潮流计算方程;其次基于潮流计算方程提出反映系统静态电压稳定的效能评估指标,计算分析接入不同容量新能源对系统静态电压的影响以及UPFC对系统薄弱节点静态电压的提升;最后通过仿真验证,安装UPFC后能明显地改善新能源电网薄弱节点的电压稳定问题。文中所提出的方法方便快捷,具有一定的实际应用价值。
基金the National Natural Science Foundation of China(Grant No.51877061).
文摘The active power loop flow(APLF)may be caused by impropriate network configuration,impropriate parameter settings,and/or stochastic bus powers.The power flow controllers,e.g.,the unified power flow controller(UPFC),may be the reason and the solution to the loop flows.In this paper,the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC.Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition,the integrated power flow needs less iterations and calculation time.Besides,with wind power fluctuation,the interval power flow(IPF)is introduced into the integrated power flow,and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF.Compared with Monte Carlo simulation,the IPF has the similar accuracy but less time.
文摘In the conventional technique,in the evaluation of the severity index,clustering and loading suffer from more iteration leading to more com-putational delay.Hence this research article identifies,a novel progression for fast predicting the severity of the line and clustering by incorporating machine learning aspects.The polynomial load modelling or ZIP(constant impedances(Z),Constant Current(I)and Constant active power(P))is developed in the IEEE-14 and Indian 118 bus systems considered for analysis of power system security.The process of finding the severity of the line using a Hybrid Line Stability Ranking Index(HLSRI)is used for assisting the concepts of machine learning with J48 algorithm,infers the superior affected lines by adopting the IEEE standards in concern to be compensated in maintaining the power system stability.The simulation is performed in the WEKA environment and deals with the supervisor learning in order based on severity to ensure the safety of power system.The Unified Power Flow Controller(UPFC),facts devices for the purpose of compensating the losses by maintaining the voltage characteristics.The finite element analysis findings are compared with the existing procedures and numerical equations for authentications.
基金supported by State Grid Corporation of China(SGCC)’s Major Science and Technology Demonstrative Project of UPFC in West Nanjing Power Grid(No.SGCC-2015-011)
文摘The unified power flow controller(UPFC)based on modular multilevel converter(MMC) is the most creative flexible ac transmission system(FACTS) device. In theory, the output voltage of the series MMC in MMCUPFC can be regulated from 0 to the rated value. However,there would be relatively large harmonics in the output voltage if the voltage modulation ratio is small. In order to analyze the influence of MMC-UPFC on the harmonics of the power grid, the theoretical calculation method and spectra of the output voltage harmonics of MMC are presented. Subsequently, the calculation formulas of the harmonics in the power grid with UPFC are proposed. Based on it, the influence of UPFC on the grid voltage harmonics is evaluated, when MMC-UPFC is operated with different submodular numbers and voltage modular ratios. Eventually, the proposed analysis method is validated using digital simulation. The study results would provide guideline for the design and operation of MMC-UPFC project.
基金supported by National Natural Science Foundation of China (No.51577032)State Grid Corporation of China (No.5210K017000C)
文摘Forced oscillations(FOs), or low-frequency oscillations(LFOs) caused by periodic, continuous, small power disturbances, threaten the security and stability of power systems.Flexible AC transmission system(FACTS)devices can effectively mitigate LFOs via stability control.We propose a novel method that mitigates FOs by shifting the resonant frequency.Based on the features of the linearized swing equation of a generator, a resonant frequency shift can be achieved by controlling the synchronous torque coefficient using a unified power flow controller(UPFC).Because of the resonance mechanism, the steady-state response of an FO can be effectively mitigated when the resonant frequency changes from the original one, which was close to the disturbance frequency.The principle is that a change in resonant frequency affects the resonance condition.Simulations are conducted in a single-machine infinite-bus(SMIB) system, and the simulation results verify that the method is straightforward to implement and can significantly mitigate FOs.The controller robustness when the resonant frequency is not accurately estimated is also analyzed in the simulations.
基金supported by National Natural Science Foundation of China (No.51607092)State Grid Corporation of China (SGCC)'s Major Science and Technology Demonstrative Project of UPFC in West Nanjing Power Grid (No.SGCC-2015-011)
文摘Control strategy of unified power flow controller(UPFC)utilizing dq decoupling control is deduced in this paper,which can closely follow the control orders of the active and reactive power.The subsynchronous resonance(SSR)characteristics of a series compensated system equipped with UPFC are studied,and the results reveal that SSR characteristics of the system may vary significantly with UPFC in service or not.Consequently,supplementary subsynchronous damping controller(SSDC)for UPFC is proposed and investigated,and the effectiveness of the proposed SSDC is verified by damping torque analysis and time domain simulations.