The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity proper...The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.展开更多
Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind sch...Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.展开更多
In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error esti...In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.展开更多
Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let π(z) be the conformal mapping from G onto the disk with radius r 0>0 and centered...Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let π(z) be the conformal mapping from G onto the disk with radius r 0>0 and centered at the origin 0, normalized by ?(z 0) = 0 and ?(z 0) = 1. Let us set $\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta $ , and let π n,p (z) be the generalized Bieberbach polynomial of degree n for the pair (G,z 0) that minimizes the integral $\iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x }$ in the class $\mathop \prod \limits_n $ of all polynomials of degree ≤ n and satisfying the conditions P n (z 0) = 0 and P′ n (z 0) = 1. In this work we prove the uniform convergence of the generalized Bieberbach polynomials π n,p (z) to ? p (z) on $\bar G$ in case of $p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$ .展开更多
A nonlinear difference scheme is given for solving a quasilinear singularly perturbed two-point boundary value problem with a turning point. The method uses non-equidistant discretization meshes. The solution of the s...A nonlinear difference scheme is given for solving a quasilinear singularly perturbed two-point boundary value problem with a turning point. The method uses non-equidistant discretization meshes. The solution of the scheme is shown to be first order accurate in the discrete L ̄∞ norm, uniformly in the perturbation parameter.展开更多
Initial value problem for linear second order ordinary differential equation with small parameter by the first and second derivatives is considered. An exponentially fitted difference scheme with constant fitting fact...Initial value problem for linear second order ordinary differential equation with small parameter by the first and second derivatives is considered. An exponentially fitted difference scheme with constant fitting factors is developed in a uniform mesh, which gives first_order uniform convergence in the sense of discrete maximum norm. Numerical results are also presented.展开更多
In this paper, we first consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the priori estimation of the solution of the continuous problem. Then, we...In this paper, we first consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the priori estimation of the solution of the continuous problem. Then, we present an exponential fitted difference scheme and discuss the solution properties of the difference equations. Finally, the uniform convergence of this scheme with respect to the small parameter in the discrete energy norm, is proved.展开更多
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi...In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.展开更多
We consider the three dimensional Cauchy problem for the Laplace equation{uxx(x,y,z)+uyy(x,y,z)+uzz(x,y,z)=0,x∈R,y∈R,0〈z≤,u(x,y,0)=g(x,y)x∈R,y∈R,uz(x,y,0)=0,x∈R,y∈R,where the data is given at z =...We consider the three dimensional Cauchy problem for the Laplace equation{uxx(x,y,z)+uyy(x,y,z)+uzz(x,y,z)=0,x∈R,y∈R,0〈z≤,u(x,y,0)=g(x,y)x∈R,y∈R,uz(x,y,0)=0,x∈R,y∈R,where the data is given at z = 0 and a solution is sought in the region x,y ∈ R,0 〈 z 〈 1. The problem is ill-posed, the solution (if it exists) doesn't depend continuously on the initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet approximate solution. Furthermore, we shall give a recipe for choosing the coarse level resolution.展开更多
Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continu...Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continuous topologically transitive (in strongly successive way) functions fn : X →X, where X is a compact interval. Surprisingly, we find that the uniform limit function is chaotic in the sense of Devaney. Lastly, we give an example to show that the denseness property of Devaney's definition is lost on the limit function.展开更多
In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniform...In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.展开更多
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under m...In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.展开更多
In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the t...In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.展开更多
In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single...In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single boundary turning point.Then we use PGFEM to solve it,where test functions are the solutions to piecewise approximate dual problems.We prove that our method has a first-order convergence rate in both L∞h norm and a discrete energy norm when we select the exact solutions to dual problems as test functions.Numerical results show that our scheme is efficient for turning point problems with different types of singularities,and the convergency coincides with our theoretical results.展开更多
Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region....Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.展开更多
The conservative form and singular perturbed ordinary differential equation with periodic boundary value problem were studied, and a conservative difference scheme was constructed. Using the method of decomposing the ...The conservative form and singular perturbed ordinary differential equation with periodic boundary value problem were studied, and a conservative difference scheme was constructed. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, it is proved that the scheme converges uniformly to the solution of differential equation with order one.展开更多
Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infini...Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infinity) b(n)a(n) less than or equal to 1 and Sigma(n=2)(+infinity) c(n)a(n) less than or equal to 1}. This article obtains the extreme points and support points of F({b(n)}, {c(n)}).展开更多
Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach wa...Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.展开更多
The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this arti...The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this article. Furthermore, the stability of convergence of Tn,∈(f,z) with disturbed sample values f(z^*) + Sk are also proved in this article.展开更多
We investigate some conditions in Fourier analysis as a generalization of monotonicity condition. Especially, we give some applications of GBVS and sequences satisfy the condition ΔB1 and ΔB2.
基金supported by the National Natural Science Foundation of China(12001189)supported by the National Natural Science Foundation of China(11171104,12171148)。
文摘The purpose of this work is to implement a discontinuous Galerkin(DG)method with a one-sided flux for a singularly perturbed Volterra integro-differential equation(VIDE)with a smooth kernel.First,the regularity property and a decomposition of the exact solution of the singularly perturbed VIDE with the initial condition are provided.Then the existence and uniqueness of the DG solution are proven.Then some appropriate projection-type interpolation operators and their corresponding approximation properties are established.Based on the decomposition of the exact solution and the approximation properties of the projection type interpolants,the DG method achieves the uniform convergence in the L2 norm with respect to the singular perturbation parameter e when the space of polynomials with degree p is used.A numerical experiment validates the theoretical results.Furthermore,an ultra-convergence order 2p+1 at the nodes for the one-sided flux,uniform with respect to the singular perturbation parameter e,is observed numerically.
基金supported by the Department of Science & Technology, Government of India under research grant SR/S4/MS:318/06.
文摘Adaptive grid methods are established as valuable computational technique in approximating effectively the solutions of problems with boundary or interior layers. In this paper,we present the analysis of an upwind scheme for singularly perturbed differential-difference equation on a grid which is formed by equidistributing arc-length monitor function.It is shown that the discrete solution obtained converges uniformly with respect to the perturbation parameter.Numerical experiments illustrate in practice the result of convergence proved theoretically.
文摘In this paper, using Lin's integral identity technique, we prove the optimal uniform convergence θ(Nx^-2ln^2Nx+Ny^-2ln^2Ny) in the L^2-norm for singularly perturbed problems with parabolic layers. The error estimate is achieved by bilinear finite elements on a Shishkin type mesh. Here Nx and Ny are the number of elements in the x- and y-directions, respectively. Numerical results are provided supporting our theoretical analysis.
文摘Let G be a finite domain in the complex plane with K-quasicon formal boundary, z 0 be an arbitrary fixed point in G and p>0. Let π(z) be the conformal mapping from G onto the disk with radius r 0>0 and centered at the origin 0, normalized by ?(z 0) = 0 and ?(z 0) = 1. Let us set $\varphi _p \left( z \right): = \int_{x_0 }^x {\left[ {\phi \left( \zeta \right)} \right]^{2/8} } d\zeta $ , and let π n,p (z) be the generalized Bieberbach polynomial of degree n for the pair (G,z 0) that minimizes the integral $\iint\limits_c {\left| {\varphi _p \left( z \right) - P_x^1 (z)} \right|^p d0_x }$ in the class $\mathop \prod \limits_n $ of all polynomials of degree ≤ n and satisfying the conditions P n (z 0) = 0 and P′ n (z 0) = 1. In this work we prove the uniform convergence of the generalized Bieberbach polynomials π n,p (z) to ? p (z) on $\bar G$ in case of $p > 2 - \frac{{K^2 + 1}}{{2K^4 }}$ .
文摘A nonlinear difference scheme is given for solving a quasilinear singularly perturbed two-point boundary value problem with a turning point. The method uses non-equidistant discretization meshes. The solution of the scheme is shown to be first order accurate in the discrete L ̄∞ norm, uniformly in the perturbation parameter.
文摘Initial value problem for linear second order ordinary differential equation with small parameter by the first and second derivatives is considered. An exponentially fitted difference scheme with constant fitting factors is developed in a uniform mesh, which gives first_order uniform convergence in the sense of discrete maximum norm. Numerical results are also presented.
文摘In this paper, we first consider the singularly perturbed boundary value problem for the fourth-order elliptic differential equation, establish the priori estimation of the solution of the continuous problem. Then, we present an exponential fitted difference scheme and discuss the solution properties of the difference equations. Finally, the uniform convergence of this scheme with respect to the small parameter in the discrete energy norm, is proved.
文摘In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis.
基金Supported by Beijing Natural Science Foundation (No.1092003) Beijing Educational Committee Foundation (No.00600054R1002)
文摘We consider the three dimensional Cauchy problem for the Laplace equation{uxx(x,y,z)+uyy(x,y,z)+uzz(x,y,z)=0,x∈R,y∈R,0〈z≤,u(x,y,0)=g(x,y)x∈R,y∈R,uz(x,y,0)=0,x∈R,y∈R,where the data is given at z = 0 and a solution is sought in the region x,y ∈ R,0 〈 z 〈 1. The problem is ill-posed, the solution (if it exists) doesn't depend continuously on the initial data. Using Galerkin method and Meyer wavelets, we get the uniform stable wavelet approximate solution. Furthermore, we shall give a recipe for choosing the coarse level resolution.
基金CSIR ( project no. F.NO. 8/3(45)/2005-EMR-I)for providing financial support to carry out the research work
文摘Recently, C. Tain and G. Chen introduced a new concept of sequence of time invariant function. In this paper we try to investigate the chaotic behavior of the uniform limit function f : X →X of a sequence of continuous topologically transitive (in strongly successive way) functions fn : X →X, where X is a compact interval. Surprisingly, we find that the uniform limit function is chaotic in the sense of Devaney. Lastly, we give an example to show that the denseness property of Devaney's definition is lost on the limit function.
文摘In this paper, based on the idea of El-Mistikawy and Werle[1] we construct a difference scheme for a singularly perturbed self-adjoint ordinary differential equation in conservation form. We prove that it is a uniformly convergent second order scheme.
基金The Major State Basic Research Program (19871051) of China the NNSF (19972039) of China and Yantai University Doctor Foundation (SX03B20).
文摘In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.
文摘In this paper, we construct a class of difference schemes with fitted factors for a singular perturbation problem of a self-adjoint ordinary differential equation. Using a different method from [1], by analyzing the truncation errors of schemes, we give the sufficient conditions under which the solution of lite difference scheme converges uniformly to the solution of the differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence, and applying them to example, obtain the numerical results.
文摘In this paper,we propose a numerical method for turning point problems in one dimension based on Petrov-Galerkin finite element method(PGFEM).We first give a priori estimate for the turning point problem with a single boundary turning point.Then we use PGFEM to solve it,where test functions are the solutions to piecewise approximate dual problems.We prove that our method has a first-order convergence rate in both L∞h norm and a discrete energy norm when we select the exact solutions to dual problems as test functions.Numerical results show that our scheme is efficient for turning point problems with different types of singularities,and the convergency coincides with our theoretical results.
基金supported by the Educational Department Foundation of Fujian Province of China(Nos. JA08140 and A0610025)the Scientific Research Foundation of Zhejiang University of Scienceand Technology (No. 2008050)the National Natural Science Foundation of China (No. 50679074)
文摘Singular perturbation reaction-diffusion problem with Dirichlet boundary condition is considered. It is a multi-scale problem. Presence of small parameter leads to boundary layer phenomena in both sides of the region. A non-equidistant finite difference method is presented according to the property of boundary layer. The region is divided into an inner boundary layer region and an outer boundary layer region according to transition point of Shishkin. The steps sizes are equidistant in the outer boundary layer region. The step sizes are gradually increased in the inner boundary layer region such that half of the step sizes are different from each other. Truncation error is estimated. The proposed method is stable and uniformly convergent with the order higher than 2. Numerical results are given, which are in agreement with the theoretical result.
文摘The conservative form and singular perturbed ordinary differential equation with periodic boundary value problem were studied, and a conservative difference scheme was constructed. Using the method of decomposing the singular term from its solution and combining an asymptotic expansion of the equation, it is proved that the scheme converges uniformly to the solution of differential equation with order one.
文摘Suppose that {b(n)} and {c(n)} are two positive sequences. Let F({b(n)}, {c(n)}) = {f(z) : f(z) is analytic in \z\ < 1, f(z) = z - Sigma(n=2)(+infinity) a(n)z(n), a(n) greater than or equal to 0, Sigma(n=2)(+infinity) b(n)a(n) less than or equal to 1 and Sigma(n=2)(+infinity) c(n)a(n) less than or equal to 1}. This article obtains the extreme points and support points of F({b(n)}, {c(n)}).
文摘Polynomial-time randomized algorithms were constructed to approximately solve optimal robust performance controller design problems in probabilistic sense and the rigorous mathematical justification of the approach was given. The randomized algorithms here were based on a property from statistical learning theory known as (uniform) convergence of empirical means (UCEM). It is argued that in order to assess the performance of a controller as the plant varies over a pre-specified family, it is better to use the average performance of the controller as the objective function to be optimized, rather than its worst-case performance. The approach is illustrated to be efficient through an example.
基金Supported by NSF of Henan Province of China(20001110001)
文摘The results of accurate order of uniform approximation and simultaneous approximation in the early work "Jackson Type Theorems on Complex Curves" are improved from Fejer points to disturbed Fejer points in this article. Furthermore, the stability of convergence of Tn,∈(f,z) with disturbed sample values f(z^*) + Sk are also proved in this article.
文摘We investigate some conditions in Fourier analysis as a generalization of monotonicity condition. Especially, we give some applications of GBVS and sequences satisfy the condition ΔB1 and ΔB2.