In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps...In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved.展开更多
Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up t...Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.展开更多
文摘In order to improve the thrust-power ratio index of the linear induction motor(LIM), a novel adaptive genetic algorithm (NAGA) is proposed for the design optimization of the LIM. A good-point set theory that helps to produce a uniform initial population is used to enhance the optimization efficiency of the genetic algorithm. The crossover and mutation probabilities are improved by using the function of sigmoid and they can be adjusted nonlinearly between average fitness and maximal fitness with individual fitness. Based on the analyses of different structures between the LIM and the rotary induction motor (RIM) and referring to the analysis method of the RIM, the steady-state characteristics of the LIM that considers the end effects of the LIM is calculated and the optimal design model of the thrust-power ratio index is also presented. Through the comparison between the optimal scheme and the old scheme, the thrust-power ratio index of the LIM is obviously increased and the validity of the NAGA is proved.
基金Research Supporting Project Number(RSPD2023R 585),King Saud University,Riyadh,Saudi Arabia.
文摘Side lobe level reduction(SLL)of antenna arrays significantly enhances the signal-to-interference ratio and improves the quality of service(QOS)in recent and future wireless communication systems starting from 5G up to 7G.Furthermore,it improves the array gain and directivity,increasing the detection range and angular resolution of radar systems.This study proposes two highly efficient SLL reduction techniques.These techniques are based on the hybridization between either the single convolution or the double convolution algorithms and the genetic algorithm(GA)to develop the Conv/GA andDConv/GA,respectively.The convolution process determines the element’s excitations while the GA optimizes the element spacing.For M elements linear antenna array(LAA),the convolution of the excitation coefficients vector by itself provides a new vector of excitations of length N=(2M−1).This new vector is divided into three different sets of excitations including the odd excitations,even excitations,and middle excitations of lengths M,M−1,andM,respectively.When the same element spacing as the original LAA is used,it is noticed that the odd and even excitations provide a much lower SLL than that of the LAA but with amuch wider half-power beamwidth(HPBW).While the middle excitations give the same HPBWas the original LAA with a relatively higher SLL.Tomitigate the increased HPBWof the odd and even excitations,the element spacing is optimized using the GA.Thereby,the synthesized arrays have the same HPBW as the original LAA with a two-fold reduction in the SLL.Furthermore,for extreme SLL reduction,the DConv/GA is introduced.In this technique,the same procedure of the aforementioned Conv/GA technique is performed on the resultant even and odd excitation vectors.It provides a relatively wider HPBWthan the original LAA with about quad-fold reduction in the SLL.