It is regretted that the author corrections requested at the proof stage were not made accurately. There are some incorrect typings in two equations which will lead to inaccurate results if readers perform calculation...It is regretted that the author corrections requested at the proof stage were not made accurately. There are some incorrect typings in two equations which will lead to inaccurate results if readers perform calculations directly展开更多
In scientific applications from plasma to chemical kinetics, a wide range of temporal scales can present in a system of differential equations. A major difficulty is encountered due to the stiffness of the system and ...In scientific applications from plasma to chemical kinetics, a wide range of temporal scales can present in a system of differential equations. A major difficulty is encountered due to the stiffness of the system and it is required to develop fast numerical schemes that are able to access previously unattainable parameter regimes. In this work, we consider an initial-final value problem for a multi-scale singularly perturbed system of linear ordi- nary differential equations with discontinuous coefficients. We construct a tailored finite point method, which yields approximate solutions that converge in the maximum norm, uniformly with respect to the singular perturbation parameters, to the exact solution. A parameter-uniform error estimate in the maximum norm is also proved. The results of numerical experiments, that support the theoretical results, are reported.展开更多
文摘It is regretted that the author corrections requested at the proof stage were not made accurately. There are some incorrect typings in two equations which will lead to inaccurate results if readers perform calculations directly
基金Acknowledgments. H. Han was supported by the NSFC Project No. 10971116. M. Tang is supported by Natural Science Foundation of Shanghai under Grant No. 12ZR1445400.
文摘In scientific applications from plasma to chemical kinetics, a wide range of temporal scales can present in a system of differential equations. A major difficulty is encountered due to the stiffness of the system and it is required to develop fast numerical schemes that are able to access previously unattainable parameter regimes. In this work, we consider an initial-final value problem for a multi-scale singularly perturbed system of linear ordi- nary differential equations with discontinuous coefficients. We construct a tailored finite point method, which yields approximate solutions that converge in the maximum norm, uniformly with respect to the singular perturbation parameters, to the exact solution. A parameter-uniform error estimate in the maximum norm is also proved. The results of numerical experiments, that support the theoretical results, are reported.