The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal cla...The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.展开更多
Naturally suited array geometry for 360° coverage is the uniform circular array (UCA). A comparison of two types of uniform circular array configurations is presented in this paper. Due to its symmetrical...Naturally suited array geometry for 360° coverage is the uniform circular array (UCA). A comparison of two types of uniform circular array configurations is presented in this paper. Due to its symmetrical geometry UCA is always targeted which results in minimal change inside lobe levels and beam width when scanned by a phased array antenna. Particle Swarm Optimization and Cuckoo algorithm are used for the calculation of complex weights of the array elements. Comparisons are drawn in the context of adaptive beam forming capabilities. Obtained results suggest that planar uniform circular array (9:10) using Cuckoo algorithm, has better beam forming properties with also reduced side lobe levels when compared to other geometry.展开更多
In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)con...In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61631020,61971218,61601167,61371169)。
文摘The problem of two-dimensional direction of arrival(2D-DOA)estimation for uniform planar arrays(UPAs)is investigated by employing the reduced-dimensional(RD)polynomial root finding technique and 2D multiple signal classification(2D-MUSIC)algorithm.Specifically,based on the relationship between the noise subspace and steering vectors,we first construct 2D root polynomial for 2D-DOA estimates and then prove that the 2D polynomial function has infinitely many solutions.In particular,we propose a computationally efficient algorithm,termed RD-ROOT-MUSIC algorithm,to obtain the true solutions corresponding to targets by RD technique,where the 2D root-finding problem is substituted by two one-dimensional(1D)root-finding operations.Finally,accurate 2DDOA estimates can be obtained by a sample pairing approach.In addition,numerical simulation results are given to corroborate the advantages of the proposed algorithm.
文摘Naturally suited array geometry for 360° coverage is the uniform circular array (UCA). A comparison of two types of uniform circular array configurations is presented in this paper. Due to its symmetrical geometry UCA is always targeted which results in minimal change inside lobe levels and beam width when scanned by a phased array antenna. Particle Swarm Optimization and Cuckoo algorithm are used for the calculation of complex weights of the array elements. Comparisons are drawn in the context of adaptive beam forming capabilities. Obtained results suggest that planar uniform circular array (9:10) using Cuckoo algorithm, has better beam forming properties with also reduced side lobe levels when compared to other geometry.
基金supported in part by the Joint Research Fund for Guangzhou University and Hong Kong University of Science and Technology under Grant No.YH202203the Guangzhou Basic Research Program Municipal School(College)Joint Funding Project,the Research Project of Guizhou University for Talent Introduction under Grant No.[2020]61+7 种基金the Cultivation Project of Guizhou University under Grant No.[2019]56the Open Fund of Key Laboratory of Advanced Manufacturing Technology,Ministry of Education under Grant No.GZUAMT2021KF[01]the National Natural Science Foundation of China under Grant Nos.51978089 and 62171119the Key R&D Plan of Sichuan Science and Technology Department under Grant No.22ZDYF2726the Chengdu Normal University Scientific Research and Innovation Team under Grant Nos.CSCXTD2020B09,ZZBS201907,CS21ZC01the Open Project of Intelligent Manufacturing Industry Technology Research Institute under Grant No.ZNZZ2208the National Key Research and Development Program of China under Grant No.2020YFB1807201Key research and development plan of Jiangsu Province under Grant No.BE2021013-3.
文摘In this paper,we investigate the end-to-end performance of intelligent reflecting surface(IRS)-assisted wireless communication systems.We consider a system in which an IRS is deployed on a uniform planar array(UPA)configuration,including a large number of reflecting elements,where the transmitters and receivers are only equipped with a single antenna.Our objective is to analytically obtain the achievable ergodic rate,outage probability,and bit error rate(BER)of the system.Furthermore,to maximize the system’s signal-to-noise ratio(SNR),we design the phase shift of each reflecting element and derive the optimal reflection phase of the IRS based on the channel state information(CSI).We also derive the exact expression of the SNR probability density function(p.d.f.)and show that it follows a non-central Chi-square distribution.Using the p.d.f.,we then derive the theoretical results of the achievable rate,outage probability,and BER.The accuracy of the obtained theoretical results is also verified through numerical simulation.Itwas shown that the achievable rate,outage probability,and BER could be improved by increasing the number of reflecting elements and choosing an appropriate SNR regime.Furthermore,we also find that the IRS-assisted communication system achieves better performance than the existing end-to-end wireless communication.