The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal ...The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal volume growth has been recently confirmed, by G. Liu in [23]. In the first part, we will give a survey on thc progress. In the second part, we will consider Yau's conjecture for manifolds with non-maximal volume growth. We will show that the finiteness of the first Chern number Cn1 is an essential condition to solve Yau's conjecture by using algebraic embedding method. Moreover, we prove that, under bounded curvature conditions, Cn1 is automatically finite provided that there exists a positive line bundle with finite Chern number. In particular, we obtain a partial answer to Yau's uniformization conjecture on Kahler manifolds with minimal volume growth.展开更多
In this paper we give a partial affirmative answer to a conjecture of Greene-Wu and Yau. Among other things, we prove that a complete noncompact Kahler surface with positive and bounded sectional curvature and with fi...In this paper we give a partial affirmative answer to a conjecture of Greene-Wu and Yau. Among other things, we prove that a complete noncompact Kahler surface with positive and bounded sectional curvature and with finite analytic Chern number c1(M)^2 is biholomorphic to C2.展开更多
文摘The well-known Yau's uniformization conjecture states that any complete noncompact Kahler manifold with positive bisectional curvature is bi-holomorphic to the Euclidean space. The conjecture for the case of maximal volume growth has been recently confirmed, by G. Liu in [23]. In the first part, we will give a survey on thc progress. In the second part, we will consider Yau's conjecture for manifolds with non-maximal volume growth. We will show that the finiteness of the first Chern number Cn1 is an essential condition to solve Yau's conjecture by using algebraic embedding method. Moreover, we prove that, under bounded curvature conditions, Cn1 is automatically finite provided that there exists a positive line bundle with finite Chern number. In particular, we obtain a partial answer to Yau's uniformization conjecture on Kahler manifolds with minimal volume growth.
基金partially supported by 973 project (2006CB805905) and NSFC (10831008)
文摘In this paper we give a partial affirmative answer to a conjecture of Greene-Wu and Yau. Among other things, we prove that a complete noncompact Kahler surface with positive and bounded sectional curvature and with finite analytic Chern number c1(M)^2 is biholomorphic to C2.