In this paper, applying the Nevanlinna theory of meromorphic function in one angular domain, we deal with a problem of uniqueness for meromorphic functions and their derivatives sharing three finite value ignoring mul...In this paper, applying the Nevanlinna theory of meromorphic function in one angular domain, we deal with a problem of uniqueness for meromorphic functions and their derivatives sharing three finite value ignoring multiplicities in an angular domain instead of the whole complex plane. Obtained results improve a recent result of Lin Weichuan and Seiki Mori.展开更多
Learning from nature has traditionally and continuously provided important insights to drive a paradigm shift in technology.In particular,recent studies show that many biological organisms exhibit spectacular surface ...Learning from nature has traditionally and continuously provided important insights to drive a paradigm shift in technology.In particular,recent studies show that many biological organisms exhibit spectacular surface topography such as shape,size,spatial organization,periodicity,interconnectivity,and hierarchy to endow them with the capability to adapt dynamically and responsively to a wide range of environments.More excitingly,in a broader perspective,these normally neglected topological features have the potential to fundamentally change the way of how engineering surface works,such as how fluid flows,how heat is transported,and how energy is generated,saved,and converted,to name a few.Thus,the design of nature-inspired surface topography for unique functions will spur new thinking and provide paradigm shift in the development of the new engineering surfaces.In this review,we first present a brief introduction to some insights extracted from nature.Then,we highlight recent progress in designing new surface topographies and demonstrate their applications in emerging areas including thermal-fluid transport,anti-icing,water harvesting,power generation,adhesive control,and soft robotics.Finally,we offer our perspectives on this emerging field,with the aim to stimulate new thinking on the development of next-generation of new materials and devices,and dramatically extend the boundaries of traditional engineering.展开更多
Aims The aims of this study were to assess how functional diversity(FD)and functional redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to function...Aims The aims of this study were to assess how functional diversity(FD)and functional redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to functional redundancy along the disturbance gradient.Methods The study was carried out in the subalpine meadow in Mount Jade Dragon,which is located at the southeastern edge of the Tibetan Plateau.Four disturbance intensities[no disturbance(ND),weak disturbance(WD),moderate disturbance(MD)and severe disturbance(SD)]were identified.Species richness,soil properties and five key plant functional traits were assessed along the disturbance gradient.Simpson’s diversity index,FD based on the Rao algorithm,functional redundancy,community-weighted mean of each functional trait and species-level functional redundancy were determined.Important Findings Unimodal change pattern of FD and functional redundancy along the disturbance gradient were found in the present study,with their maximum in MD and WD,respectively.Species diversity showed a decreasing trend with increasing disturbance intensity.As disturbance intensified,species with traits related to conservative growth strategies,such as low specific leaf area(SLA)and high leaf dry matter content(LDMC),decreased,whereas species with resource acquisitive strategies,such as small plant,high SLA and low LDMC,increased in the community.At the species level,species showed species-specific roles in functional redundancy.Notably,some species were important in the community in terms of their unique function.For instance,Ligularia dictyoneura in ND and Potentilla delavayi in MD and SD.展开更多
基金Foundation item: the National Natural Science Foundation of China (No. 10471048) the Natural Science Foundation of Xianning College (No. BK0714) and the Natural Science Foundation of Hubei Educational Committee (No. 2009B2809).
文摘In this paper, applying the Nevanlinna theory of meromorphic function in one angular domain, we deal with a problem of uniqueness for meromorphic functions and their derivatives sharing three finite value ignoring multiplicities in an angular domain instead of the whole complex plane. Obtained results improve a recent result of Lin Weichuan and Seiki Mori.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFA0209500)the Research Council of Hong Kong(Grant Nos.C1018-17G,and 11275216)+3 种基金the Shenzhen Science and Technology Innovation Council(Grant No.JCYJ20170413141208098)the National Natural Science Foundation of China(Grant No.51706100)the Natural Science Foundation of Jiangsu Province(Grant No.BK20180477)the City University of Hong Kong(Grant No.9360140)
文摘Learning from nature has traditionally and continuously provided important insights to drive a paradigm shift in technology.In particular,recent studies show that many biological organisms exhibit spectacular surface topography such as shape,size,spatial organization,periodicity,interconnectivity,and hierarchy to endow them with the capability to adapt dynamically and responsively to a wide range of environments.More excitingly,in a broader perspective,these normally neglected topological features have the potential to fundamentally change the way of how engineering surface works,such as how fluid flows,how heat is transported,and how energy is generated,saved,and converted,to name a few.Thus,the design of nature-inspired surface topography for unique functions will spur new thinking and provide paradigm shift in the development of the new engineering surfaces.In this review,we first present a brief introduction to some insights extracted from nature.Then,we highlight recent progress in designing new surface topographies and demonstrate their applications in emerging areas including thermal-fluid transport,anti-icing,water harvesting,power generation,adhesive control,and soft robotics.Finally,we offer our perspectives on this emerging field,with the aim to stimulate new thinking on the development of next-generation of new materials and devices,and dramatically extend the boundaries of traditional engineering.
基金This work was supported by the National Natural Science Foundation of China(31560181)The Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China(2019HJ2096001006).
文摘Aims The aims of this study were to assess how functional diversity(FD)and functional redundancy respond to subalpine meadow ecosystem degradation under anthropogenic disturbance and how species contribute to functional redundancy along the disturbance gradient.Methods The study was carried out in the subalpine meadow in Mount Jade Dragon,which is located at the southeastern edge of the Tibetan Plateau.Four disturbance intensities[no disturbance(ND),weak disturbance(WD),moderate disturbance(MD)and severe disturbance(SD)]were identified.Species richness,soil properties and five key plant functional traits were assessed along the disturbance gradient.Simpson’s diversity index,FD based on the Rao algorithm,functional redundancy,community-weighted mean of each functional trait and species-level functional redundancy were determined.Important Findings Unimodal change pattern of FD and functional redundancy along the disturbance gradient were found in the present study,with their maximum in MD and WD,respectively.Species diversity showed a decreasing trend with increasing disturbance intensity.As disturbance intensified,species with traits related to conservative growth strategies,such as low specific leaf area(SLA)and high leaf dry matter content(LDMC),decreased,whereas species with resource acquisitive strategies,such as small plant,high SLA and low LDMC,increased in the community.At the species level,species showed species-specific roles in functional redundancy.Notably,some species were important in the community in terms of their unique function.For instance,Ligularia dictyoneura in ND and Potentilla delavayi in MD and SD.