期刊文献+
共找到356篇文章
< 1 2 18 >
每页显示 20 50 100
基于KPCA-CNN-DBiGRU模型的短期负荷预测方法 被引量:3
1
作者 陈晓红 王辉 李喜华 《管理工程学报》 CSCD 北大核心 2024年第2期221-231,共11页
本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度... 本文针对已有神经网络模型在短期负荷预测中输入维度过高、预测误差较大等问题,提出了一种结合核主成分分析、卷积神经网络和深度双向门控循环单元的短期负荷预测方法。先运用核主成分分析法对原始高维输入变量进行降维,再通过卷积深度双向门控循环单元网络模型进行负荷预测。以第九届全国电工数学建模竞赛试题A题中的负荷数据作为实际算例,结果表明所提方法较降维之前预测误差大大降低,与已有预测方法相比也有大幅的误差降低。 展开更多
关键词 核主成分分析 卷积神经网络 双向门控循环单元 负荷预测
下载PDF
基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测
2
作者 李丹 罗娇娇 +2 位作者 孙光帆 唐建 黄烽云 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第5期68-75,共8页
考虑到输入信息和预测模型的不确定性对负荷预测结果的影响,本文提出一种基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测方法.通过条件变分自编码器生成指定天气因素预测值和日历特征条件下实际天气因素可能的多个随机样... 考虑到输入信息和预测模型的不确定性对负荷预测结果的影响,本文提出一种基于条件变分自编码器和贝叶斯神经网络的短期电力负荷概率预测方法.通过条件变分自编码器生成指定天气因素预测值和日历特征条件下实际天气因素可能的多个随机样本,以模拟天气预测信息的不确定性;构建GRU-S2S贝叶斯神经网络学习模型参数的分布特征,以反映预测模型的不确定性,并结合MC dropout技术获得多个可能的负荷预测值;遍历天气因素全部模拟样本,将预测模型输出的负荷预测值构成集合,并通过核密度估计获得预测时段内各时刻预测负荷服从的概率分布.实际算例结果表明,该方法在短期负荷概率预测中具有更高的分位数预测精度和更可靠稳定的区间预测结果. 展开更多
关键词 负荷概率预测 门控循环单元 贝叶斯神经网络 条件变分自编码器
下载PDF
基于二次分解双向门控单元新型电力系统超短期负荷预测 被引量:2
3
作者 王德文 安涵 《电力科学与工程》 2024年第3期1-9,共9页
在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对... 在新型电力系统中,电力负荷随机性和波动性较强,现有预测方法难以对其实现高精度预测。为此,提出一种基于二次分解和双向门控循环单元的超短期负荷预测模型。首先,针对电力负荷的强随机性和强波动性,利用自适应噪声完备经验模态分解对电力负荷历史序列进行初步分解,使负荷序列更加平稳。随后,对初步分解得到的强非平稳分量运用连续变分模态分解进行二次分解,降低其预测难度。最后,为充分学习电力负荷的时序特征,在预测过程构建基于双向门控循环单元的超短期电力负荷预测模型。实验结果表明,该模型相较于现有优秀预测模型有更高的预测精度。 展开更多
关键词 新型电力系统 超短期负荷 负荷预测 二次分解 双向门控循环单元
下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:1
4
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
干扰素诱导蛋白3联合降钙素原对老年重症肺结核患者预后的评估价值
5
作者 魏云霞 王鑫 +4 位作者 龙雪娟 邵丽娇 闫丽静 于娣 李宁 《结核与肺部疾病杂志》 2024年第2期143-147,共5页
目的:探讨干扰素诱导蛋白3(IFIT3)联合血清降钙素原(procalcitonin, PCT)对老年重症肺结核患者预后的评估价值。方法:采用前瞻性研究方法,收集2022年4月至2023年3月河北省胸科医院重症监护病房82例老年重症肺结核患者作为研究对象,根据... 目的:探讨干扰素诱导蛋白3(IFIT3)联合血清降钙素原(procalcitonin, PCT)对老年重症肺结核患者预后的评估价值。方法:采用前瞻性研究方法,收集2022年4月至2023年3月河北省胸科医院重症监护病房82例老年重症肺结核患者作为研究对象,根据患者入住重症监护病房28 d转归分为存活组(42例)和死亡组(40例)。收集两组患者的临床资料,采用酶联免疫吸附法(ELISA)测定血清IFIT3及PCT含量。以入重症监护病房28 d预后情况为参照标准,绘制受试者工作特征(ROC)曲线分析IFIT3和PCT对老年重症肺结核患者死亡的预测价值。结果:死亡组的急性生理学及慢性健康状况评估系统Ⅱ(APACHEⅡ)评分、血清IFIT3含量和PCT含量,分别为(25.68±8.12)分、21.00(13.00, 48.00) pg/ml及3.21(0.96, 5.78) ng/ml,均高于存活组[分别为(21.17±8.57)分,11.00(5.75, 22.75) pg/ml及0.41(0.15, 1.04) ng/ml],差异均有统计学意义(t=-2.373,P=0.018;Z=-2.920,P=0.003;Z=2.028,P=0.001)。以入住重症监护病房28 d预后情况为参考标准,IFIT3和PCT预测老年重症肺结核患者死亡的ROC曲线下面积(AUC)分别为0.687(95%CI:0.572~0.803)、0.832(95%CI:0.741~0.922)。IFIT3最佳临界值为12.50 pg/ml时,预测老年重症肺结核患者死亡的敏感度为77.5%和特异度为59.5%;血清PCT最佳临界值为1.44 ng/ml时,预测老年重症肺结核患者死亡的敏感度为72.5%和特异度为83.3%;IFIT3联合PCT预测老年重症肺结核患者死亡的AUC为0.850(95%CI:0.767~0.933),敏感度和特异度分别为75.0%和83.3%,阳性预测值和阴性预测值分别为81.1%和75.6%。结论:IFIT3联合PCT检测对老年重症肺结核患者的预后评估有一定的临床价值。 展开更多
关键词 干扰素诱导剂 重症监护病房 老年人 预测
下载PDF
基于改进INFO-CNN-QRGRU模型的农村分布式光伏发电短期概率预测
6
作者 王俊 邱爽 +3 位作者 鞠丹阳 谢易澎 张楠楠 王慧 《沈阳农业大学学报》 CAS CSCD 北大核心 2024年第4期490-502,共13页
随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定... 随着“双碳”目标的推进,清洁能源所占比重大幅度增加,分布式光伏发电在我国农村地区快速发展,但其随机性、间歇性的特点给新能源消纳和电网稳定带来很大的挑战。光伏发电预测可以在一定程度上改善新能源消纳问题,减少光伏发电的不稳定性对电网的冲击。因此,为提高光伏发电功率预测精度,提出一种基于改进向量加权平均算法优化CNN-QRGRU网络的光伏发电概率预测方法。首先采用ReliefF算法对特征变量进行选择,在此基础上利用高斯混合模型(Gaussian mixture model,GMM)聚类方法将天气分为晴天、晴转多云和阴雨天3种类型,将处理好的数据输入到CNN-GRU模型中,并利用向量加权平均(weighted mean of vectors algorithm,INFO)优化算法对模型超参数进行调参,将分位数回归模型(quantile regression,QR)与INFO-CNN-GRU模型相结合得到光伏功率条件分布,结合核密度估计法从条件分布中获得概率密度函数,完成概率预测。以实际光伏电站数据作为基础,将提出的INFO优化算法与其他几种传统的优化算法进行对比,结果表明INFO的优化效果更好,在此基础上进行概率预测,得到的概率预测结果相较于点预测能提供更多有效信息,更具有应用价值。 展开更多
关键词 光伏出力 高斯混合模型聚类 门控循环单元 向量加权平均算法 分位数回归 概率预测
下载PDF
山丘区小流域SCS广义单位线产汇流模型
7
作者 邵嘉佳 李彬权 +2 位作者 孟健 任泽凌 黄华平 《南水北调与水利科技(中英文)》 CAS CSCD 北大核心 2024年第3期618-624,共7页
以山丘区小流域洪水预报为研究对象,耦合改进后的美国农业部水土保持局(Soil Conservation Service,SCS)产流模型与广义单位线汇流模型,模型参数意义明确、容易确定。选取东江流域西枝江水系上游九洲水文站以上集水区域场次洪水资料,将... 以山丘区小流域洪水预报为研究对象,耦合改进后的美国农业部水土保持局(Soil Conservation Service,SCS)产流模型与广义单位线汇流模型,模型参数意义明确、容易确定。选取东江流域西枝江水系上游九洲水文站以上集水区域场次洪水资料,将SCS广义单位线模型与三水源新安江模型进行次洪模拟应用对比。结果表明:SCS广义单位线模型和新安江模型在研究流域场次洪水模拟中均具有适用性,洪峰、洪量及过程线均满足许可误差要求,两个模型的合格率分别为69%和77%,整体上新安江模型的模拟精度更优。新提出的SCS广义单位线模型结构简单,参数易于确定,能够提供可接受精度的模型结果,为山丘区小流域洪水预报提供新的模型选择,同时也能为广义单位线参数区域化规律研究提供支撑。 展开更多
关键词 山丘区小流域 新安江模型 SCS模型 广义单位线 洪水预报
下载PDF
改进Transformer在产油量预测中的应用研究
8
作者 潘少伟 范文静 +1 位作者 王树楷 秦国伟 《福建电脑》 2024年第2期27-30,共4页
产油量预测有利于制定合理的采油策略。本文提出一种包含卷积神经网络、门控循环单元和Transformer的组合模型CNN-GRU-Transformer,可用于产油量预测。该模型应用CNN提取部分深层空间特征,GRU提取产油量数据的时序特征,并根据油井数据... 产油量预测有利于制定合理的采油策略。本文提出一种包含卷积神经网络、门控循环单元和Transformer的组合模型CNN-GRU-Transformer,可用于产油量预测。该模型应用CNN提取部分深层空间特征,GRU提取产油量数据的时序特征,并根据油井数据的特点,改进了Transformer原有结构。通过改进的Transformer,将提取到的特征与预测相结合。实验的结果表明,CNN-GRU-Transformer模型在预测产油量各项指标中均为最优值,在适应产油量基本趋势方面表现最佳。 展开更多
关键词 产油量 卷积神经网络 门控循环单元 深度学习模型
下载PDF
基于BO-BiGRU-Attention短期电力负荷预测
9
作者 包广斌 张瑞 +2 位作者 彭璐 李明 赵怀森 《计算机技术与发展》 2024年第6期201-206,共6页
电力系统的可靠供应对于工业、商业和居民的生活至关重要。为了满足电力需求并维持电力系统的稳定运行,提高短期电力负荷预测的准确性和可靠性尤为关键;针对负荷数据存在复杂的非线性特性,该文提出一种基于贝叶斯优化算法的双向门控循... 电力系统的可靠供应对于工业、商业和居民的生活至关重要。为了满足电力需求并维持电力系统的稳定运行,提高短期电力负荷预测的准确性和可靠性尤为关键;针对负荷数据存在复杂的非线性特性,该文提出一种基于贝叶斯优化算法的双向门控循环单元和注意力机制(BO-BiGRU-Attention)的混合预测模型对短期电力负荷进行精准预测。首先,使用Min-Max Normalization方法对负荷数据进行归一化处理。其次,利用BiGRU网络捕获序列中的长期依赖关系和上下文信息,结合注意力机制,通过在输入序列的不同部分给予不同的权重,从而突出关键特征。最后,针对BiGRU-Attention模型的超参数难以选取最优解的问题,引入贝叶斯优化算法对BiGRU-Attention模型的超参数进行寻优,完成短期电力负荷的预测。采用印度北部某地区的电力负荷数据进行预测分析,仿真结果表明,BO-BiGRU-Attention网络表现优于其他模型,各误差评价指标最小,其中MAE、RMSE和MAPE分别为56.67,73.49和1.16%,预测精度达到了99.47%。 展开更多
关键词 电力系统 负荷预测 贝叶斯优化算法 双向门控循坏单元 注意力机制
下载PDF
基于VMD-XGBoost模型及因果特征选取的汽轮发电机组振动信号预测技术研究
10
作者 陈宇豪 杨为民 +3 位作者 郭瑞 姜虓 刘振祥 谭平 《汽轮机技术》 北大核心 2024年第3期221-224,228,共5页
“双碳”目标下,我国能源格局产生深刻变化,对汽轮机发电机安全稳定运行的要求进一步提高,深入挖掘分析海量运行数据有助于机组运行状态的评估及预测。提出构建汽轮发电机组参数因果关系网络探究参数间的因果关系,利用VMD算法分解振动... “双碳”目标下,我国能源格局产生深刻变化,对汽轮机发电机安全稳定运行的要求进一步提高,深入挖掘分析海量运行数据有助于机组运行状态的评估及预测。提出构建汽轮发电机组参数因果关系网络探究参数间的因果关系,利用VMD算法分解振动信号并搭建XGBoost预测模型对各信号分量进行预测,叠加各信号分量的预测值以得到振动信号的预测结果。利用国内某1000MW汽轮发电机组运行数据对所提模型进行论证实验,结果表明本文所提模型有较高预测精度。 展开更多
关键词 汽轮发电机组 轴系振动 趋势预测 因果发现 数据驱动 变分模态分解 极端梯度提升
下载PDF
基于GWO-GRU的光伏发电功率预测
11
作者 陈庆明 廖鸿飞 +1 位作者 孙颖楷 曾亚森 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期438-444,共7页
针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结... 针对长短期记忆网络(LSTM)应用于光伏发电功率预测时存在的耗时长或精准度低的问题,提出基于灰狼算法(GWO)优化门控循环单元(GRU)的光伏发电功率预测模型。通过GWO算法优化GRU模型的超参数,以近似最优参数建立光伏发电功率预测模型。结果表明,长时功率预测时,GWO-GRU模型的均方根误差更低、拟合系数更高、耗时更少,比传统LSTM模型的平均绝对误差降低10.20%;短时功率预测时,GWO-GRU模型在3种典型天气条件下不仅预测的平均误差最低、稳定性最强,而且比GWO-LSTM模型的平均用时节省17.24%。不同时长的功率预测表明,GWO-GRU相对于LSTM光伏功率预测效果更佳。 展开更多
关键词 光伏发电 功率预测 门控循环单元 灰狼算法 长短期记忆网络 时间序列
下载PDF
基于EMD-KPCA-LSTM的抽水蓄能机组振动预测
12
作者 朱雯琪 冯陈 +2 位作者 周宇轩 张陈瑞 韩昊轩 《水电能源科学》 北大核心 2024年第8期160-163,131,共5页
针对抽水蓄能机组振动信号时间序列高度非线性、非平稳性等导致常规预测方法难以准确预测的问题,构建了结合经验模态分解(EMD)、由主成分分析(PCA)改进的核主成分分析(KPCA)和长短期记忆神经网络(LSTM)的抽水蓄能机组振动预测模型。该... 针对抽水蓄能机组振动信号时间序列高度非线性、非平稳性等导致常规预测方法难以准确预测的问题,构建了结合经验模态分解(EMD)、由主成分分析(PCA)改进的核主成分分析(KPCA)和长短期记忆神经网络(LSTM)的抽水蓄能机组振动预测模型。该模型利用EMD算法首先将振动信号进行分解,再利用KPCA筛选出关键影响因子,最后通过LSTM对特征序列进行时间动态建模,实现对抽水蓄能机组振动预测。试验结果表明,所建模型相较传统的LSTM、EMD-LSTM等预测模型具有更好的预测效果,可以更精确地预测振动信号的变化趋势。 展开更多
关键词 EMD KPCA LSTM 抽水蓄能机组 振动信号 预测
下载PDF
基于时空图注意力网络的超短期区域负荷预测 被引量:2
13
作者 赵紫昱 陈渊睿 +2 位作者 陈霆威 刘俊峰 曾君 《电力系统自动化》 EI CSCD 北大核心 2024年第12期147-155,共9页
目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积... 目前,空间负荷预测研究对复杂时空关系的考虑不足。为此,文中提出一种基于多维、多源特征的区域级负荷超短期时空预测模型。首先,根据已有的区域级负荷进行元胞划分,构建考虑元胞相关性的图拓扑。其次,分别通过图注意力网络、一维卷积神经网络和门控循环单元,从空间、特征和时间维度提取有效特征,连接全连接层输出结果。最后,基于美国新英格兰地区的真实电力负荷数据进行仿真验证,并提取模型注意力权重,分析元胞之间的空间依赖性。结果表明,所提模型相比传统模型在不同预测步长上均具有更高的预测精度和稳定性,有效挖掘了区域级负荷的空间依赖性。 展开更多
关键词 负荷预测 负荷空间分布 卷积神经网络 门控循环单元 注意力机制 可解释性
下载PDF
基于EWT-CNN-BiGRU的多特征电力负荷预测模型
14
作者 保富 孙梦觉 +1 位作者 邓安明 周植高 《科技创新与应用》 2024年第7期35-40,共6页
针对目前多特征预测模型在短期电力负荷数据上精度不足的问题,提出一种基于经验小波变换(EWT)的卷积神经网络(CNN)融合双向门控循环单元(Bi GRU)预测模型。首先,从多维时序数据中提取强关联性特征,其次,对选定特征进行经验小波变换,将... 针对目前多特征预测模型在短期电力负荷数据上精度不足的问题,提出一种基于经验小波变换(EWT)的卷积神经网络(CNN)融合双向门控循环单元(Bi GRU)预测模型。首先,从多维时序数据中提取强关联性特征,其次,对选定特征进行经验小波变换,将时序数据映射至频域以获取子序列,最后,通过卷积神经网络和双向门控循环单元融合模型实现对电力负荷数据的预测。该预测模型使用德国某联合循环电厂的时序数据进行实验验证。结果表明,该预测模型获得99.463%的拟合优度,具有较好的预测效果。 展开更多
关键词 电力负荷预测 经验小波变换 卷积神经网络 双向门控循环单元 预测模型
下载PDF
基于图自编码器和GRU网络的分层交通流预测模型
15
作者 赵子琪 杨斌 张远广 《计算机科学》 CSCD 北大核心 2024年第S01期680-685,共6页
准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有... 准确的交通流预测信息不仅可以为交通管理人员提供交通决策的坚实基础,还可以减少交通拥堵情况。在交通流预测任务中,获得有效的交通流的时空特性是保证预测效果的前提。现有的方法大多是用未来时刻的数据进行监督学习,提取的特征具有局限性。针对现有预测模型无法充分挖掘交通流的时空特性的问题,提出了基于改进的图自编码器和门控循环单元的分层交通预测模型。首先使用图注意力自编码器以无监督的方式深度挖掘交通流的空间特性,然后使用门控循环单元进行时间特征提取。分层结构采用分开训练的方式进行时空依赖关系的学习,旨在获取路网天然存在的空间拓扑特征,使其可以兼容不同时间步下的交通流预测任务。大量实验证明,所提出的GAE-GRU模型在不同数据集下的交通预测任务中取得了优异的表现,MAE,RMSE和MAPE指标均优于基线模型。 展开更多
关键词 交通流预测 图自编码器 门控循环单元 分层 时空依赖
下载PDF
基于小波包变换与深度学习的超短期光伏功率预测 被引量:1
16
作者 刘源延 孔小兵 +1 位作者 马乐乐 刘向杰 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期537-546,共10页
针对光伏功率序列的复杂多变特征,提出一种基于小波包变换(WPT)的门控循环单元(GRU)光伏功率组合预测方法。首先通过相关性分析挑选重要气象因子,并利用WPT将原始光伏功率序列分解为一组子序列;然后,提出一种基于莱维飞行天牛须搜索算法... 针对光伏功率序列的复杂多变特征,提出一种基于小波包变换(WPT)的门控循环单元(GRU)光伏功率组合预测方法。首先通过相关性分析挑选重要气象因子,并利用WPT将原始光伏功率序列分解为一组子序列;然后,提出一种基于莱维飞行天牛须搜索算法(LFBAS)的相似日选择方法,以选择相似于预测日的历史日作为输入数据集;最后,建立一组基于GRU网络的深度学习光伏功率预测模型,将每个子序列预测结果叠加得到光伏功率最终预测结果。仿真结果表明,该文所提出的预测方法在预测精度和计算效率方面具有显著优势。 展开更多
关键词 光伏发电 功率预测 小波包变换 相似日 门控循环单元 天牛须搜索算法
下载PDF
计及多储能单元出力水平的风功率波动平抑控制方法
17
作者 常樊睿 李勇 +3 位作者 彭衍建 周年光 高酉松 张曦壬 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期182-193,I0018,共13页
在风电场侧配置电池储能是缓解风电功率波动、提高风电可调控性的有效途径。为满足风功率波动平抑要求,提出了一种计及多储能单元出力水平的风功率波动平抑控制方法,充分考虑多储能单元实时出力能力,在兼顾功率平抑目标的同时实现减小... 在风电场侧配置电池储能是缓解风电功率波动、提高风电可调控性的有效途径。为满足风功率波动平抑要求,提出了一种计及多储能单元出力水平的风功率波动平抑控制方法,充分考虑多储能单元实时出力能力,在兼顾功率平抑目标的同时实现减小储能电池能量调用、各储能单元充放电切换次数、放电深度及荷电状态波动区间。首先分析了滤波时间常数对风功率平抑效果以及储能功率分配方法对各单元荷电状态变化的影响;其次引入超短期风功率预测,根据风功率预测数据建立滤波时间常数优化模型,得到滤波时间常数最优解以及最小储能功率指令;然后分析了各储能单元出力水平与功率平抑需求的影响,进一步提出了一种分层复合式储能单元功率分配方法,实现了多储能单元的功率指令分配,避免了各储能单元频繁与过度充放电,有利于延长使用寿命;最后以湖南省某实际风电场为例,通过实际算例验证了所提方法的有效性。 展开更多
关键词 风功率波动 电池储能 多储能单元 滤波时间常数 功率分配 风功率预测
下载PDF
基于电力计量大数据的区域性短期负荷预测算法设计
18
作者 田天 向君 +1 位作者 李艳 董新宇 《电子设计工程》 2024年第13期27-31,共5页
针对单一算法在对电力负荷进行预测时存在的局限性,同时为了提高短期负荷的预测精度,文中提出了一种基于CEEMDAN分解的门控循环单元和小波神经网络相结合的短期负荷预测算法,并构建了SSA-GRU&WNN预测模型。该模型采用CEEMDAN算法分... 针对单一算法在对电力负荷进行预测时存在的局限性,同时为了提高短期负荷的预测精度,文中提出了一种基于CEEMDAN分解的门控循环单元和小波神经网络相结合的短期负荷预测算法,并构建了SSA-GRU&WNN预测模型。该模型采用CEEMDAN算法分解负荷数据,以降低数据的波动性与不确定性,利用样本熵算法对分解得到的分量进行评估及分组。同时分别利用GRU和WNN对两组分量加以预测,且引入麻雀搜索算法实现对二者超参数的优化。实验结果表明,所提算法的MAE、RMSE和MAPE分别为66.54 MW、58.62 MW及67.8%,相比传统单一负荷预测算法的误差更小、时间成本也更低。 展开更多
关键词 负荷预测 门控循环单元 小波神经网络 样本熵 麻雀搜索算法
下载PDF
基于非侵入式负荷分解的家庭负荷两阶段超短期负荷预测模型
19
作者 李延珍 王海鑫 +2 位作者 杨子豪 陈哲 杨俊友 《电工技术学报》 EI CSCD 北大核心 2024年第11期3379-3391,共13页
精细化负荷预测为制定家庭新型需求响应策略或能效管理模式提供了可靠的指导信息与理论基础,而负荷监测系统的广泛研究与发展为家庭设备层的负荷预测提供了有力的数据支撑。基于家庭负荷智能电能表集中数据,该文提出一种集分解-预测一... 精细化负荷预测为制定家庭新型需求响应策略或能效管理模式提供了可靠的指导信息与理论基础,而负荷监测系统的广泛研究与发展为家庭设备层的负荷预测提供了有力的数据支撑。基于家庭负荷智能电能表集中数据,该文提出一种集分解-预测一体化的家庭负荷两阶段超短期负荷预测方法。该方法第一阶段提出了基于卷积神经网络(CNN)和双向门控单元(BiGRU)神经网络的非侵入式负荷分解(NILM)模型,解决了目前深度分解模型中特征提取不充分、分解精度低等问题。第二阶段构建了基于时间模式注意力机制(TPA)的时间卷积神经网络(TCN)负荷预测模型,深度挖掘NILM分解数据、集中负荷数据及日期特征等输入变量的深层交互信息,实现家庭设备层的负荷预测。算例部分通过UK-DALE数据集对所提方法进行验证,结果表明,该方法能够获得较高的分解精度和预测效果,为家庭负荷预测提供了良好的条件。 展开更多
关键词 非侵入式负荷分解 负荷预测 卷积神经网络 双向门控单元神经网络 时间卷积网络 注意力机制
下载PDF
一种基于注意序列到序列门控循环单元的风力发电预测模型
20
作者 毕守东 《系统仿真技术》 2024年第1期55-59,100,共6页
针对现有风力发电预测精度低的问题,提出一种改进的注意序列到序列门控循环单元(attention sequence-to-sequence gated recurrent unit,ASSGRU)的风力发电预测模型。该模型为典型的多输入多输出(multiple input multiple output,MIMO)... 针对现有风力发电预测精度低的问题,提出一种改进的注意序列到序列门控循环单元(attention sequence-to-sequence gated recurrent unit,ASSGRU)的风力发电预测模型。该模型为典型的多输入多输出(multiple input multiple output,MIMO)模型,并基于注意力机制选择重要特征,从而提高风力发电预测的精度和稳定性。通过中国某电力公司发布的风电数据集对提出的预测模型进行验证。与自适应小波神经网络(adaptive wavelet neural network,AWNN)、K均值聚类的前馈神经网络(k-means-feedforward neural network,K-FNN)和长短时记忆(long short-term memory,LSTM)等模型相比,所提模型均方根误差变异系数(coefficient variation of root mean square error,CV-RMSE)、平均绝对百分比误差(mean absolute percent error,MAPE)以及归一化均方根误差(normalized root mean square error,NRMSE)等指标更优,从而验证了所提模型的可行性和有效性。该模型对混合智能电网智能化服务及新能源调度规划具有一定借鉴作用。 展开更多
关键词 智能电网 风力发电预测 门控循环单元 特征提取 注意力机制
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部