The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is...The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.展开更多
A new constellation which is the multiplication of the rotation matrix and the diagonal matrix ac- cording to the number of transmitters is proposed to increase the diversity product, the key property to the performan...A new constellation which is the multiplication of the rotation matrix and the diagonal matrix ac- cording to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.展开更多
Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat fre...Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.展开更多
In this paper, the design of signal constellations parameters is studied for Differential Unitary Space-Time Modulation (DUSTM) based on the design criterion of maximizing the diversity product. Further, noninteger se...In this paper, the design of signal constellations parameters is studied for Differential Unitary Space-Time Modulation (DUSTM) based on the design criterion of maximizing the diversity product. Further, noninteger searching method for the signal constellation parameters design is proposed in order to get better codes. Experimental results show that under the different Doppler spread and data transmission rate, the proposed design performs better than the previous design using integer parameters in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system over frequency-selective fading channels.展开更多
We study the transfer between small special unipotent representations for all equal rank real forms of type E_(6) and E_(7). As a consequence, one can verify these modules are unitarity using the results of Wallach an...We study the transfer between small special unipotent representations for all equal rank real forms of type E_(6) and E_(7). As a consequence, one can verify these modules are unitarity using the results of Wallach and Zhu. Moreover, the K-spectra of these modules can be obtained explicitly.展开更多
During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform...During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform formulas remain elusive—even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring(in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.展开更多
In this paper, we give explicit realizations for the irreducible integrable modules, which were clas- sified in Chang and Tan [Pacific J Math, 2011, 252: 293-312], of the extended baby TKK algebra. Moreover, condition...In this paper, we give explicit realizations for the irreducible integrable modules, which were clas- sified in Chang and Tan [Pacific J Math, 2011, 252: 293-312], of the extended baby TKK algebra. Moreover, conditions for these modules to be unitary are determined.展开更多
Recently, a multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detec...Recently, a multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detection with relatively low complexity. However, an error floor occurs if the algorithm is applied over rapid-fading channels. Based on the assumption of continuous fading, a multiple symbol differential automatic sphere decoding (MSDASD) algorithm is developed by incorporating a recursive form of an ML metric into automatic SD (ASD) algorithm. Furthermore, two algorithms, termed as MSD approximate ASD (MSDAASD) and MSD pruning ASD (MSDPASD), are proposed to reduce computational complexity and the number of comparisons, respectively. Compared with the existing typical algorithms, i.e., multiple symbol differential feedback detection (MS-DFD) and noncoherent sequence detection (NSD), the performance of the proposed algorithms is much superior to that of MS-DFD and a little inferior to that of NSD, while the complexity is lower than that of MS-DFD in most cases and significantly lower than that of NSD.展开更多
The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direc...The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary twophoton operations could be reduced from O(n^3) with the traditional decomposition approach to O(n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the(n-k)-uniform hypergraph state.展开更多
Next generation communication systems will be expected to operate under environment with high-speed motion and increasing number of antennas where it will be difficult or even impractical to estimate the real-time cha...Next generation communication systems will be expected to operate under environment with high-speed motion and increasing number of antennas where it will be difficult or even impractical to estimate the real-time channel coefficients. For this reason, the DSTM (differential space time modulation) and USTM (unitary space time modulation) approaches that do not require the channel estimation became hot topics in recent years. In this paper, we propose a general approach to designing high spectral-efficiency signaling schemes. A novel modulation, dual constellations space-time modulation (DCSTM), is derived by extending DSTM and USTM theoretically. DCSTM preserves the good features of USTM such as low error rate and the capability of being demodulated without channel estimation. At the same time, it enhances the spectral efficiency and reduces the complexity of the modulation/demodulation. It can be adapted to different data rates and thus has a wider applicable area. Simulation results verify the theoretical analysis and the design of the new modulation method.展开更多
基金The National Natural Science Foundation of China(No60572072,60496311)the National High Technology Research and Development Program of China (863Program) (No2006AA01Z264)+1 种基金the National Basic Research Program of China (973Program) (No2007CB310603)the PhD Programs Foundation of Ministry of Educa-tion of China (No20060286016)
文摘The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.
基金Supported by the National Natural Science Foundation of China (No.60402014), and the Doctoral Program Fund of China (No.20010561007).
文摘A new constellation which is the multiplication of the rotation matrix and the diagonal matrix ac- cording to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.
基金Supported by the High Technology Research and Development Program of China (No. 2003AA12331007 ) and National Natural Science Foundation of China ( No. 60272079).
文摘Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly fiat-fading channels without channel state iufonnation, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast fiat-fading channels, a subatrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneouslv and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation resuits.
基金Supported by the National Natural Science Foundation of China (No.60772062)the National Basic Research Pro-gram of China (No.2007CB310607)the Natural Science Research Fund of Jiangsu University (No. 05 KJB 510090)
文摘In this paper, the design of signal constellations parameters is studied for Differential Unitary Space-Time Modulation (DUSTM) based on the design criterion of maximizing the diversity product. Further, noninteger searching method for the signal constellation parameters design is proposed in order to get better codes. Experimental results show that under the different Doppler spread and data transmission rate, the proposed design performs better than the previous design using integer parameters in Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system over frequency-selective fading channels.
基金supported by Natural Science Foundation of Shanghai (Grant No. 22ZR1422900)supported by the National Natural Science Foundation of China (Grant No. 11271460)+3 种基金Guangdong Province(Grant No. 2023A1515012186)Shenzhen City (Grant No. 2022373357)the Research Grants Council of HKSAR,China (Grant No. 16302521)supported by Shenzhen Science and Technology Innovation Committee (Grant No. 20220818094918001)
文摘We study the transfer between small special unipotent representations for all equal rank real forms of type E_(6) and E_(7). As a consequence, one can verify these modules are unitarity using the results of Wallach and Zhu. Moreover, the K-spectra of these modules can be obtained explicitly.
基金supported by National Natural Science Foundation of China(Grant No.11171324)the Hong Kong Research Grants Council under RGC Project(Grant No.60311)the Hong Kong University of Science and Technology under DAG S09/10.SC02.
文摘During the last decade, a great deal of activity has been devoted to the calculation of the HilbertPoincar′e series of unitary highest weight representations and related modules in algebraic geometry. However,uniform formulas remain elusive—even for more basic invariants such as the Gelfand-Kirillov dimension or the Bernstein degree, and are usually limited to families of representations in a dual pair setting. We use earlier work by Joseph to provide an elementary and intrinsic proof of a uniform formula for the Gelfand-Kirillov dimension of an arbitrary unitary highest weight module in terms of its highest weight. The formula generalizes a result of Enright and Willenbring(in the dual pair setting) and is inspired by Wang's formula for the dimension of a minimal nilpotent orbit.
基金supported by National Natural Science Foundation of China (Grant No.10931006)the PhD Programs Foundation of Ministry of Education of China (Grant No. 20100121110014)
文摘In this paper, we give explicit realizations for the irreducible integrable modules, which were clas- sified in Chang and Tan [Pacific J Math, 2011, 252: 293-312], of the extended baby TKK algebra. Moreover, conditions for these modules to be unitary are determined.
基金Supported by the National Basic Research Program of China (973 Program) (Grant No. 2009CB320403)the National Defense Pre-researchProject of the 11th Five-Year-Plan of China (Grant No. 1060741001020102)
文摘Recently, a multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detection with relatively low complexity. However, an error floor occurs if the algorithm is applied over rapid-fading channels. Based on the assumption of continuous fading, a multiple symbol differential automatic sphere decoding (MSDASD) algorithm is developed by incorporating a recursive form of an ML metric into automatic SD (ASD) algorithm. Furthermore, two algorithms, termed as MSD approximate ASD (MSDAASD) and MSD pruning ASD (MSDPASD), are proposed to reduce computational complexity and the number of comparisons, respectively. Compared with the existing typical algorithms, i.e., multiple symbol differential feedback detection (MS-DFD) and noncoherent sequence detection (NSD), the performance of the proposed algorithms is much superior to that of MS-DFD and a little inferior to that of NSD, while the complexity is lower than that of MS-DFD in most cases and significantly lower than that of NSD.
基金supported by the National Natural Science Foundation of China(Grant No.11574093)the Natural Science Foundation of the Fujian Province of China(Grant No.2017J01004)the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University(Grant No.ZQN-PY113)
文摘The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary twophoton operations could be reduced from O(n^3) with the traditional decomposition approach to O(n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the(n-k)-uniform hypergraph state.
基金the National Natural Science Foundation of China(Grant No 90104014)the National 863 Project(Grant No.2001AA1230511.
文摘Next generation communication systems will be expected to operate under environment with high-speed motion and increasing number of antennas where it will be difficult or even impractical to estimate the real-time channel coefficients. For this reason, the DSTM (differential space time modulation) and USTM (unitary space time modulation) approaches that do not require the channel estimation became hot topics in recent years. In this paper, we propose a general approach to designing high spectral-efficiency signaling schemes. A novel modulation, dual constellations space-time modulation (DCSTM), is derived by extending DSTM and USTM theoretically. DCSTM preserves the good features of USTM such as low error rate and the capability of being demodulated without channel estimation. At the same time, it enhances the spectral efficiency and reduces the complexity of the modulation/demodulation. It can be adapted to different data rates and thus has a wider applicable area. Simulation results verify the theoretical analysis and the design of the new modulation method.