Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project...Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage.展开更多
Coalbed methane enrichment will be controlled by many good macro geological dynamical conditions; there is evident difference of enrichment grade in different area and different geological conditions.This paper has st...Coalbed methane enrichment will be controlled by many good macro geological dynamical conditions; there is evident difference of enrichment grade in different area and different geological conditions.This paper has studied tectonic dynamical conditions, thermal dynamical conditions and hydraulic conditions, which affect coalbed methane enrichment in Qinshui basin.Coalbed methane enrichment units have been divided based on tectonic dynamical conditions of Qinshui basin,combined with thermal dynamical conditions and hydraulic conditions.展开更多
On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put fo...On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put forward according to the practical need of oilfield development and relevant theories. The specific implications of development and geology are given to each type of flow units, which has provided a scientific basis for oil development.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me...While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.展开更多
Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as ...Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.展开更多
We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Lang...We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method.展开更多
The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devi...The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN's activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.展开更多
The paper contains a summary of some results of original research total aggregates. The main idea is determining the boundaries of the groups for classification of fuzzy and threshold aggregates using the method of de...The paper contains a summary of some results of original research total aggregates. The main idea is determining the boundaries of the groups for classification of fuzzy and threshold aggregates using the method of decomposing a mixture of probability distributions. The article presents the experience of partitions of a real aggregate as a finite mixture of probability distributions on private aggregates. Threshold value defined by the boundaries of private aggregates, will match the value of the phenomenon at the intersection of the curves of probability distributions, which extracted from the mixture. The proposed scheme of identification threshold aggregates has found practical application in the research of aggregate of Russian employees by level of payroll and establishing the optimal minimum value monthly wage. The official data of the Federal State Statistics Service were used.展开更多
Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale inf...Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.展开更多
With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this prob...With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.展开更多
The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research...The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.展开更多
基金State Key Laboratory of Hydroscience and Hydraulic Engineering of Tsinghua University,Grant/Award Number:2019-KY-03Key Technology of Intelligent Construction of Urban Underground Space of North China University of Technology,Grant/Award Number:110051360022XN108-19+3 种基金Research Start-up Fund Project of North China University of Technology,Grant/Award Number:110051360002Yujie Project of North China University of Technology,Grant/Award Number:216051360020XN199/006National Natural Science Foundation of China,Grant/Award Numbers:51522903,51774184National Key R&D Program of China,Grant/Award Numbers:2018YFC1504801,2018YFC1504902。
文摘Due to the complexity of underground engineering geology,the tunnel boring machine(TBM)usually shows poor adaptability to the surrounding rock mass,leading to machine jamming and geological hazards.For the TBM project of Lanzhou Water Source Construction,this study proposed a neural network called PCA-GRU,which combines principal component analysis(PCA)with gated recurrent unit(GRU)to improve the accuracy of predicting rock mass classification in TBM tunneling.The input variables from the PCA dimension reduction of nine parameters in the sample data set were utilized for establishing the PCA-GRU model.Subsequently,in order to speed up the response time of surrounding rock mass classification predictions,the PCA-GRU model was optimized.Finally,the prediction results obtained by the PCA-GRU model were compared with those of four other models and further examined using random sampling analysis.As indicated by the results,the PCA-GRU model can predict the rock mass classification in TBM tunneling rapidly,requiring about 20 s to run.It performs better than the previous four models in predicting the rock mass classification,with accuracy A,macro precision MP,and macro recall MR being 0.9667,0.963,and 0.9763,respectively.In Class II,III,and IV rock mass prediction,the PCA-GRU model demonstrates better precision P and recall R owing to the dimension reduction technique.The random sampling analysis indicates that the PCA-GRU model shows stronger generalization,making it more appropriate in situations where the distribution of various rock mass classes and lithologies change in percentage.
文摘Coalbed methane enrichment will be controlled by many good macro geological dynamical conditions; there is evident difference of enrichment grade in different area and different geological conditions.This paper has studied tectonic dynamical conditions, thermal dynamical conditions and hydraulic conditions, which affect coalbed methane enrichment in Qinshui basin.Coalbed methane enrichment units have been divided based on tectonic dynamical conditions of Qinshui basin,combined with thermal dynamical conditions and hydraulic conditions.
文摘On the basis of other researchers' achievements and the authors' understanding of flow units, a proposal on classification and denomination of flow units for clastic reservoirs of continental deposit is put forward according to the practical need of oilfield development and relevant theories. The specific implications of development and geology are given to each type of flow units, which has provided a scientific basis for oil development.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
基金This research was funded by National Natural Science Foundation of China under Grant No.61806171Sichuan University of Science&Engineering Talent Project under Grant No.2021RC15+2 种基金Open Fund Project of Key Laboratory for Non-Destructive Testing and Engineering Computer of Sichuan Province Universities on Bridge Inspection and Engineering under Grant No.2022QYJ06Sichuan University of Science&Engineering Graduate Student Innovation Fund under Grant No.Y2023115The Scientific Research and Innovation Team Program of Sichuan University of Science and Technology under Grant No.SUSE652A006.
文摘While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic.
文摘Compaction correction is a key part of paleogeomorphic recovery methods. Yet, the influence of lithology on the porosity evolution is not usually taken into account. Present methods merely classify the lithologies as sandstone and mudstone to undertake separate porositydepth compaction modeling. However, using just two lithologies is an oversimplification that cannot represent the compaction history. In such schemes, the precision of the compaction recovery is inadequate. To improve the precision of compaction recovery, a depth compaction model has been proposed that involves both porosity and clay content. A clastic lithological compaction unit classification method, based on clay content, has been designed to identify lithological boundaries and establish sets of compaction units. Also, on the basis of the clastic compaction unit classification, two methods of compaction recovery that integrate well and seismic data are employed to extrapolate well-based compaction information outward along seismic lines and recover the paleo-topography of the clastic strata in the region. The examples presented here show that a better understanding of paleo-geomorphology can be gained by applying the proposed compaction recovery technology.
基金supported by the National Natural Science Foundation of China(Grant No.40875012)the National Basic Research Program of China(Grant No.2009CB421502)the Meteorology Open Fund of Huaihe River Basin(HRM200704).
文摘We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method.
基金This study was jointly funded by the National Key R&D Program of China[grant number 2022YFC3004103]the National Natural Foundation of China[grant number 42275003]+2 种基金the Beijing Science and Technology Program[grant number Z221100005222012]the Beijing Meteorological Service Science and Technology Program[grant number BMBKJ202302004]the China Meteorological Administration Youth Innovation Team[grant number CMA2023QN10].
基金supported by the Ministry of Higher Education,Malaysia under Scholarship of Hadiah Latihan Persekutuan under Grant No.KPT.B.600-19/3-791206065445
文摘The high-density population leads to crowded cities. The future city is envisaged to encompass a large-scale network with diverse applications and a massive number of interconnected heterogeneous wireless-enabled devices. Hence, green technology elements are crucial to design sustainable and future-proof network architectures. They are the solutions for spectrum scarcity, high latency, interference, energy efficiency, and scalability that occur in dense and heterogeneous wireless networks especially in the home area network (HAN). Radio-over-fiber (ROF) is a technology candidate to provide a global view of HAN's activities that can be leveraged to allocate orthogonal channel communications for enabling wireless-enabled HAN devices transmission, with considering the clustered-frequency-reuse approach. Our proposed network architecture design is mainly focused on enhancing the network throughput and reducing the average network communications latency by proposing a data aggregation unit (DAU). The performance shows that with the DAU, the average network communications latency reduces significantly while the network throughput is enhanced, compared with the existing ROF architecture without the DAU.
文摘The paper contains a summary of some results of original research total aggregates. The main idea is determining the boundaries of the groups for classification of fuzzy and threshold aggregates using the method of decomposing a mixture of probability distributions. The article presents the experience of partitions of a real aggregate as a finite mixture of probability distributions on private aggregates. Threshold value defined by the boundaries of private aggregates, will match the value of the phenomenon at the intersection of the curves of probability distributions, which extracted from the mixture. The proposed scheme of identification threshold aggregates has found practical application in the research of aggregate of Russian employees by level of payroll and establishing the optimal minimum value monthly wage. The official data of the Federal State Statistics Service were used.
基金Sponsored by the Project of Multi Modal Monitoring Information Learning Fusion and Health Warning Diagnosis of Wind Power Transmission System(Grant No.61803329)the Research on Product Quality Inspection Method Based on Time Series Analysis(Grant No.201703A020)the Research on the Theory and Reliability of Group Coordinated Control of Hydraulic System for Large Engineering Transportation Vehicles(Grant No.51675461).
文摘Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.
基金supported by the Science and Technology Project from the State Grid Shanghai Municipal Electric Power Company of China (52094019006U)the Shanghai Rising-Star Program (18QB1400200)。
文摘With the increase in the power receiving proportion and an insufficient peak regulation capacity of the local units, the receiving-end power grid struggles to achieve peak regulation in valley time. To solve this problem while considering the potential of the large-scale charge load of electric vehicles(EVs), an aggregator-based demand response(DR) mechanism for EVs that are participating in the peak regulation in valley time is proposed in this study. In this aggregator-based DR mechanism, the profits for the power grid’s operation and the participation willingness of the EV owners are considered. Based on the characteristics of the EV charging process and the day-ahead unit generation scheduling, a rolling unit commitment model with the DR is established to maximize the social welfare. In addition, to improve the efficiency of the optimization problem solving process and to achieve communication between the independent system operator(ISO) and the aggregators, the clustering algorithm is utilized to extract typical EV charging patterns. Finally, the feasibility and benefits of the aggregator-based DR mechanism for saving the costs and reducing the peak-valley difference of the receiving-end power grid are verified through case studies.
文摘The Northeast United States spring is indicative of major meteorological and biological change though the seasonal boundaries are difficult to define and may even be changing with global climate warming. This research aims to obtain a synoptic meteorological definition of the spring season through an assessment of air mass frequency over the past 60 years. The validity of recent speculations that the onset and termination of spring have changed in recent decades with global change is also examined. The Spatial Synoptic Classification is utilized to define daily air masses over the region. Annual and seasonal baseline frequencies are identified and their differences are acquired to characterize the season. Seasonal frequency departures of the early and late segments of the period of record are calculated and examined for practical and statistical significance. The daily boundaries of early and late spring are also isolated and assessed across the period of record to identify important changes in the season’s initiation and termination through time. Results indicate that the Northeast spring season is dominated by dry air masses, mainly the Dry Moderate and Dry Polar types. Prior to 1975, more polar air masses are detected while after 1975 more moderate and tropical types are identified. Late spring is characterized by increased variability in all moist air mass frequencies. These findings indicate that, from a synoptic perspective, the season is dry through time but modern springs are also warmer than those of past decades and the initiation of the season is likely arriving earlier. The end of the season represents more variable day-to-day air mass conditions in modern times than detected in past decades.