Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Ana...Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis.展开更多
The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (...The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (UER) and multivariate linear regression (MLR) were used in this study. Loading equipment parameters such as bucket capacity, machine weight, engine power, boom length, digging depth, and dumping height were considered as variables. The results obtained by models and mean absolute error rate indicate that these models can be applied as the useful tool in determination of overhaul and maintenance cost of loading equipment. The results of this study can be used by the decision-makers for the specific surface mining operations.展开更多
文摘Often many variables have to be analyzed for their importance in terms of significant contribution and predictability in medical research. One of the possible analytical tools may be the Multiple Linear Regression Analysis. However, research papers usually report both univariate and multivariate regression analyses of the data. The biostatistician sometimes faces practical difficulties while selecting the independent variables for logical inclusion in the multivariate analysis. The selection criteria for inclusion of a variable in the multivariate regression is that the variable at the univariate level should have a regression coefficient with p 〈 0.20. However, there is a chance that an independent variable with p 〉 0.20 at univariate regression may become significant in the multivariate regression analysis and vice versa, provided the above criteria is not strictly adhered to. We undertook both univariate and multivariate linear regression analyses on data from two multi-centric clinical trials. We recommend that there is no need to restrict the p value of 〈= 0.20. Because of high speed computer and availability of statistical software, the desired results could be achieved by considering all relevant independent variables in multivariate regression analysis.
文摘The purpose of this research was to develop a new approach in determination of overhaul and maintenance cost of loading equipment in surface mining. Two statistical models including univariate exponential regression (UER) and multivariate linear regression (MLR) were used in this study. Loading equipment parameters such as bucket capacity, machine weight, engine power, boom length, digging depth, and dumping height were considered as variables. The results obtained by models and mean absolute error rate indicate that these models can be applied as the useful tool in determination of overhaul and maintenance cost of loading equipment. The results of this study can be used by the decision-makers for the specific surface mining operations.