期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Influence of varied drought types on soil conservation service within the framework of climate change:insights from the Jinghe River Basin,China
1
作者 BAI Jizhou LI Jing +4 位作者 RAN Hui ZHOU Zixiang DANG Hui ZHANG Cheng YU Yuyang 《Journal of Arid Land》 SCIE CSCD 2024年第2期220-245,共26页
Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio... Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin. 展开更多
关键词 meteorological drought hydrological drought agricultural drought soil conservation service Variable Infiltration Capacity(VIC)model Revised universal Soil Loss Equation(RUSLE) Jinghe River Basin
下载PDF
Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala,India,using Revised Universal Soil Loss Equation(RUSLE) and geo-information technology 被引量:35
2
作者 V.Prasannakumar H.Vijith +1 位作者 S.Abinod N.Geetha 《Geoscience Frontiers》 SCIE CAS 2012年第2期209-215,共7页
A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a fore... A comprehensive methodology that integrates Revised Universal Soil Loss Equation (RUSLE) model and Geographic Information System (GIS) techniques was adopted to determine the soil erosion vulner- ability of a forested mountainous sub-watershed in Kerala, India. The spatial pattern of annual soil erosion rate was obtained by integrating geo-environmental variables in a raster based GIS method. GIS data layers including, rainfall erosivity (R), soil erodability (K), slope length and steepness (LS), cover management (C) and conservation practice (P) factors were computed to determine their effects on average annual soil loss in the area. The resultant map of annual soil erosion shows a maximum soil loss of 17.73 t h-1 y i with a close relation to grass land areas, degraded forests and deciduous forests on the steep side-slopes (with high LS ). The spatial erosion maps generated with RUSLE method and GIS can serve as effective inputs in deriving strategies for land planning and management in the environmentally sensitive mountainous areas. 展开更多
关键词 Soil erosion Revised universal Soil Loss Equation (RUSLE)GIS Pamba Western Ghats KERALA
下载PDF
Factor value determination and applicability evaluation of universal soil loss equation in granite gneiss region
3
作者 Wen-hai ZHANG Xing-nan ZHANG Zhi-dong GAO 《Water Science and Engineering》 EI CAS 2009年第2期87-97,共11页
Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation an... Six types of runoff plots were set up and an experimental study was carried out to examine natural rate of soil and water loss in the granite gneiss region of northern Jiangsu Province in China. Through correlation analysis of runoff and soil loss during 364 rainfall events, a simplified and convenient mathematical formula suitable for calculating the rainfall erosivity factor (R) for the local region was established. Other factors of the universal soil loss equation (USLE model) were also determined. Relative error analysis of the soil loss of various plots calculated by the USLE model on the basis of the observed values showed that the relative error ranged from -3.5% to 9.9% and the confidence level was more than 90%. In addition, the relative error was 5.64% for the terraced field and 12.36% for the sloping field in the practical application. Thus, the confidence level was above 87.64%. These results provide a scientific basis for forecasting and monitoring soil and water loss, for comprehensive management of small watersheds, and for soil and water conservation planning in the region. 展开更多
关键词 granite gneiss region soil erosion universal soil loss equation factor value applicability evaluation
下载PDF
Combining RUSLE model and the vegetation health index to unravel the relationship between soil erosion and droughts in southeastern Tunisia 被引量:1
4
作者 Olfa TERWAYET BAYOULI ZHANG Wanchang Houssem TERWAYET BAYOULI 《Journal of Arid Land》 SCIE CSCD 2023年第11期1269-1289,共21页
Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and incre... Droughts and soil erosion are among the most prominent climatic driven hazards in drylands,leading to detrimental environmental impacts,such as degraded lands,deteriorated ecosystem services and biodiversity,and increased greenhouse gas emissions.In response to the current lack of studies combining drought conditions and soil erosion processes,in this study,we developed a comprehensive Geographic Information System(GIS)-based approach to assess soil erosion and droughts,thereby revealing the relationship between soil erosion and droughts under an arid climate.The vegetation condition index(VCI)and temperature condition index(TCI)derived respectively from the enhanced vegetation index(EVI)MOD13A2 and land surface temperature(LST)MOD11A2 products were combined to generate the vegetation health index(VHI).The VHI has been conceived as an efficient tool to monitor droughts in the Negueb watershed,southeastern Tunisia.The revised universal soil loss equation(RUSLE)model was applied to quantitatively estimate soil erosion.The relationship between soil erosion and droughts was investigated through Pearson correlation.Results exhibited that the Negueb watershed experienced recurrent mild to extreme drought during 2000–2016.The average soil erosion rate was determined to be 1.8 t/(hm2•a).The mountainous western part of the watershed was the most vulnerable not only to soil erosion but also to droughts.The slope length and steepness factor was shown to be the most significant controlling parameter driving soil erosion.The relationship between droughts and soil erosion had a positive correlation(r=0.3);however,the correlation was highly varied spatially across the watershed.Drought was linked to soil erosion in the Negueb watershed.The current study provides insight for natural disaster risk assessment,land managers,and stake-holders to apply appropriate management measures to promote sustainable development goals in fragile environments. 展开更多
关键词 DROUGHTS soil erosion vegetation health index(VHI) revised universal soil loss equation(RUSLE)model southeastern Tunisia
下载PDF
Universal Jensen's Equations in Banach Modules over a C-Algebra and Its Unitary Group 被引量:9
5
作者 Chun Gil PARK 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2004年第6期1047-1056,共10页
In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equatio... In this paper,we prove the generalized Hyers-Ulam-Rassias stability of universal Jensen's equations in Banach modules over a unital C~*-algebra.It is applied to show the stability of universal Jensen's equations in a Hilbert module over a unital C~*-algebra.Moreover,we prove the stability of linear operators in a Hilbert module over a unitat C~*-algebra. 展开更多
关键词 Banach module over C~*-algebra universal Jensen's equation Stability Hilbert module over C~*-algebra Real rank O Unitary group
原文传递
基于RUSLE模型的河南省黄河流域土壤侵蚀研究 被引量:8
6
作者 刘天可 袁彩凤 《华北水利水电大学学报(自然科学版)》 2020年第3期7-13,共7页
为了更好地研究黄河河南段的土壤侵蚀情况,以河南省黄河流域为研究区域,采用地理信息系统和遥感技术,融合遥感影像、DEM数据、降雨数据和土壤数据等,将RUSLE模型应用到该区域的土壤侵蚀研究中。结果表明:该区域的年均土壤侵蚀模数为861.... 为了更好地研究黄河河南段的土壤侵蚀情况,以河南省黄河流域为研究区域,采用地理信息系统和遥感技术,融合遥感影像、DEM数据、降雨数据和土壤数据等,将RUSLE模型应用到该区域的土壤侵蚀研究中。结果表明:该区域的年均土壤侵蚀模数为861.78 t/(km^2·a),年均土壤侵蚀总量为305.44×10^5 t/a,轻度以上的土壤侵蚀多发生在河南西部的一些省辖市内。其中,土壤侵蚀等级为轻度以下的区域,其面积占研究区总面积的88.39%,该区域主要分布在0°~10°坡度范围内,主要的土地利用类型为耕地和草地;中度侵蚀和强烈侵蚀的区域,二者的总面积占比为10.71%,主要分布在15°~25°坡度范围内,土地利用类型主要为林地;极强烈侵蚀和剧烈侵蚀的区域面积所占比例较小,占比共计0.9%,该区域零星分布在坡度范围大于25°的草地和林地区域。该研究成果揭示了河南省黄河流域的土壤侵蚀情况,可为区域水土流失治理提供科学依据。 展开更多
关键词 河南省黄河流域 RUSLE(Revised universal Soil Loss Equation) 土壤侵蚀 水土流失
下载PDF
Addressing soil protection concerns in forest ecosystem management under climate change 被引量:2
7
作者 Ana Raquel Rodrigues Brigite Botequim +2 位作者 Catarina Tavares Patrícia Pécurto JoséGBorges 《Forest Ecosystems》 SCIE CSCD 2020年第3期432-442,共11页
Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest ... Background: Climate change may strongly influence soil erosion risk, namely through variations in the precipitation pattern. Forests may contribute to mitigate the impacts of climate change on soil erosion and forest managers are thus challenged by the need to define strategies that may protect the soil while addressing the demand for other ecosystem services. Our emphasis is on the development of an approach to assess the impact of silvicultural practices and forest management models on soil erosion risks under climate change. Specifically, we consider the annual variation of the cover-management factor(C) in the Revised Universal Soil Loss Equation over a range of alternative forest management models to estimate the corresponding annual soil losses, under both current and changing climate conditions. We report and discuss results of an application of this approach to a forest area in Northwestern Portugal where erosion control is the most relevant water-related ecosystem service.Results: Local climate change scenarios will contribute to water erosion processes, mostly by rainfall erosivity increase.Different forest management models provide varying levels of soil protection by trees, resulting in distinct soil loss potential.Conclusions: Results confirm the suitability of the proposed approach to address soil erosion concerns in forest management planning. This approach may help foresters assess management models and the corresponding silvicultural practices according to the water-related services they provide. 展开更多
关键词 C-FACTOR EROSIVITY Ecosystem services Forest management Revised universal soil loss equation(RUSLE)
下载PDF
Forest soil conservation based on eco-service provision unit method and its value in Anji County,Huzhou,Zhejiang,China 被引量:2
8
作者 Biao Zhang Ji-xi Gao +1 位作者 Gao-di Xie Chun-xia Lu 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第2期405-415,共11页
We propose an eco-service provision unit method for estimating the benefit and spatial differences of forests in controlling soil erosion.A total of 197 eco-service provision units were grouped on 1424.43 km2 of fores... We propose an eco-service provision unit method for estimating the benefit and spatial differences of forests in controlling soil erosion.A total of 197 eco-service provision units were grouped on 1424.43 km2 of forest according to differences in vegetation,slope,soil,and rainfall.The amount of soil conservation and its economic value were estimated.The forests in Anji County prevent4.08 9 105 tons of soil from eroding annually,thereby avoiding 1.36 9 104 tons of nutrient loss(on-site cost) and preventing 149 tons of nutritive elements from entering water systems(off-site cost).From an economic perspective,the soil nutrient conservation in the forests of Anji County generated an annual benefit of 43.37 million RMB(Chinese Currency,6.20 RMB = US$1).On average,each hectare of ecological forest contributed up to 436 RMB annually because of soil conservation.Ecological complexes with higher rainfall intensity,such as broadleaf forest and red soil on slope gradients [25°,contributed the highest soil conservation benefits.This study identified and quantified the dominant contributors and magnitudes of soil conservation provided by forests.This information can benefit decision making regarding differentiated ecological compensation policies. 展开更多
关键词 Soil erosion and conservation Eco-service provision unit(ESPU) Rainfall erosivity Soil erodibility universal Soil Loss Equation(USLE)
下载PDF
Modeling spatial and temporal change of soil erosion based on multi-temporal remotely sensed data 被引量:1
9
作者 Pei Liu PeiJun Du +2 位作者 RuiMei Han Chao Ma YouFeng Zou 《Research in Cold and Arid Regions》 CSCD 2015年第6期702-708,共7页
In order to monitor the pattern, distribution, and trend of land use/cover change (LUCC) and its impacts on soil erosion, it is highly appropriate to adopt Remote Sensing (RS) data and Geographic Information Syst... In order to monitor the pattern, distribution, and trend of land use/cover change (LUCC) and its impacts on soil erosion, it is highly appropriate to adopt Remote Sensing (RS) data and Geographic Information System (GIS) to analyze, assess, simulate, and predict the spatial and temporal evolution dynamics. In this paper, multi-temporal Landsat TM/ETM+ re- motely sensed data are used to generate land cover maps by image classification, and the Cellular Automata Markov (CA_Markov) model is employed to simulate the evolution and trend of landscape pattern change. Furthermore, the Re- vised Universal Soil Loss Equation (RUSLE) is used to evaluate the situation of soil erosion in the case study mining area. The trend of soil erosion is analyzed according to total/average amount of soil erosion, and the rainfall (R), cover man- agement (C), and support practice (P) factors in RUSLE relevant to soil erosion are determined. The change trends of soil erosion and the relationship between land cover types and soil erosion amount are analyzed. The results demonstrate that the CA_Markov model is suitable to simulate and predict LUCC trends with good efficiency and accuracy, and RUSLE can calculate the total soil erosion effectively. In the study area, there was minimal erosion grade and this is expected to con- tinue to decline in the next few years, according to our prediction results. 展开更多
关键词 land use/cover change (LUCC) soil erosion CA_Markov model revised universal soil loss equation (RUSLE)
下载PDF
Invariance of specific mass increment in the case of non-equilibrium growth
10
作者 L.M.Martyushev A.P.Sergeev P.S.Terentiev 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期139-141,共3页
The invariance of specific mass increments of crystalline structures that co-exist in the case of non-equilibrium growth is grounded for the first time by using the maximum entropy production principle. Based on the h... The invariance of specific mass increments of crystalline structures that co-exist in the case of non-equilibrium growth is grounded for the first time by using the maximum entropy production principle. Based on the hypothesis of the existence of a universal growth equation, and through the dimensional analysis, an explicit form of the time-dependent specific mass increment is proposed. The applicability of the obtained results for describing growth in animate nature is discussed. 展开更多
关键词 entropy production universal growth equation
下载PDF
Assessing and mapping soil erosion risk zone in Ratlam District, central India
11
作者 Sunil SAHA Debabrata SARKAR Prolay MONDAL 《Regional Sustainability》 2022年第4期373-390,共18页
Evaluation of physical and quantitative data of soil erosion is crucial to the sustainable development of the environment. The extreme form of land degradation through different forms of erosion is one of the major pr... Evaluation of physical and quantitative data of soil erosion is crucial to the sustainable development of the environment. The extreme form of land degradation through different forms of erosion is one of the major problems in the sub-tropical monsoon-dominated region. In India, tackling soil erosion is one of the major geo-environmental issues for its environment. Thus, identifying soil erosion risk zones and taking preventative actions are vital for crop production management. Soil erosion is induced by climate change, topographic conditions, soil texture, agricultural systems, and land management. In this research, the soil erosion risk zones of Ratlam District was determined by employing the Geographic Information System(GIS), Revised Universal Soil Loss Equation(RUSLE), Analytic Hierarchy Process(AHP), and machine learning algorithms(Random Forest and Reduced Error Pruning(REP) tree). RUSLE measured the rainfall eosivity(R), soil erodibility(K), length of slope and steepness(LS), land cover and management(C), and support practices(P) factors. Kappa statistic was used to configure model reliability and it was found that Random Forest and AHP have higher reliability than other models. About 14.73%(715.94 km^(2)) of the study area has very low risk to soil erosion, with an average soil erosion rate of 0.00-7.00×10^(3)kg/(hm^(2)·a), while about 7.46%(362.52 km^(2)) of the study area has very high risk to soil erosion, with an average soil erosion rate of 30.00×10^(3)-48.00×10^(3)kg/(hm^(2)·a). Slope, elevation, stream density, Stream Power Index(SPI), rainfall, and land use and land cover(LULC) all affect soil erosion. The current study could help the government and non-government agencies to employ developmental projects and policies accordingly. However, the outcomes of the present research also could be used to prevent, monitor, and control soil erosion in the study area by employing restoration measures. 展开更多
关键词 Soil erosion risk Revised universal Soil Loss Equation(RUSLE) Analytic Hierarchy Process(AHP) Machine learning algorithms Kappa coefficient Ratlam District INDIA
下载PDF
Determining the Soil Erodibility for an Experimental Basin in the Semi-Arid Region Using Geoprocessing
12
作者 Erich Celestino Braga Pereira Fernando Bezerra Lopes +3 位作者 Francisco Emanoel Firmino Gomes Aldenia Mendes Masceno de Almeida Ana Caroline Messias de Magalhaes Eunice Maia de Andrade 《American Journal of Plant Sciences》 2017年第12期3174-3188,共15页
Erosion is the natural process which has the greatest environmental impact, and is the principal trigger for desertification around the globe. The main model used to estimate soil loss by erosion is the Universal Soil... Erosion is the natural process which has the greatest environmental impact, and is the principal trigger for desertification around the globe. The main model used to estimate soil loss by erosion is the Universal Soil Loss Equation (USLE), which unites the major factors that influence erosion into one equation. The soil erodibility factor (K) is the component of this equation that represents soil physics, and is defined as the inherent capacity of the soil to withstand disintegration of its particles and their subsequent transport. The use of geostatistics is seen as an alternative in spatializing this variable from sampled to non-sampled points. The aim of this study therefore, was to determine the soil erodibility factor for an experimental basin in the semi-arid region of Brazil, in addition to generating the soil erodibility map using geostatistics. Disturbed and undisturbed soil samples were collected from 35 points, and laboratory samples were processed to determine the granulometry, permeability and organic matter of the soil, data which are used to determine the K-factor. Kriging was performed to spatialize the study variable, when spherical, exponential and Gaussian semivariograms were tested for generation of the soil erodibility map, these being evaluated by their respective deviations resulting from cross-validation. The mean value of K for the Haplic Luvisol was 0.0328 ton·ha·h/ha·MJ·mm;for the eutrophic Red-Yellow Argisol it was 0.0258 ton·ha·h/ha·MJ·mm;and for the Fluvic Neosol, it was 0.0424 ton·ha·h/ha·MJ·mm. The experimental basin is classified as highly erodible. The semivariogram that presented the best fit for generating the soil erodibility map of the study area was Gaussian. 展开更多
关键词 EROSION universal Soil Loss Equation GEOSTATISTICS
下载PDF
Assessing the USLE Crop and Management Factor C for Soil Erosion Modeling in a Large Mountainous Watershed in Central China 被引量:12
13
作者 Sarah Schnbrodt Patrick Saumer +2 位作者 Thorsten Behrens Christoph Seeber Thomas Scholten 《Journal of Earth Science》 SCIE CAS CSCD 2010年第6期835-845,共11页
Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the veget... Due to the impoundment of the Yangtze River, the Three Gorges Dam in China fosters high land-use dynamics. Soil erosion is expected to increase dramatically. One of the key factors in soil erosion control is the vegetation cover and crop type. However, determining these factors adequately for the use in soil erosion modeling is very time-consuming especially for large mountainous areas, such as the Xiangxi (香溪) catchment in the Three Gorges area. In our study, the crop and management factor C was calculated using the fractional vegetation cover (CFvc) based on Landsat-TM images from 2005, 2006, and 2007 and on literature studies (CLIT). In 2007, the values of CFvc range between 0.001 and 0.98 in the Xiangxi catchment. The mean CFVC value is 0.05. CLIT values are distinctly higher, ranging from 0.08 to 0.46 with a mean value of 0.32 in the Xiangxi catchment. The mean potential soil loss amounts to 120.62 t/ha/a in the Xiangxi catchment when using CLIT for modeling. Based on CFVC, the predicted mean soil loss in the Xiangxi catchment is 11.50 t/ha/a. Therefore, CLIT appears to bemore reliable than the C factor based on the fractional vegetation cover. 展开更多
关键词 C factor soil erosion modeling universal Soil Loss Equation fractional vegetation cover Three Gorges Dam Yangtze River.
原文传递
Quantitative study on influences of terraced field construction and check-dam siltation on soil erosion 被引量:11
14
作者 GAO Haidong LI Zhanbin +2 位作者 LI Peng JIA Lianlian ZHANG Xiang 《Journal of Geographical Sciences》 SCIE CSCD 2012年第5期946-960,共15页
To study the influences of terraced field construction and check-dam siltation on soil erosion of a watershed, we built a simplified watershed model for the Loess Plateau hilly-gully region including terraced fields, ... To study the influences of terraced field construction and check-dam siltation on soil erosion of a watershed, we built a simplified watershed model for the Loess Plateau hilly-gully region including terraced fields, slope farmlands, steep-slope grasslands, and dam farmlands and defined three states of watershed (i.e., pioneer, intermediate, and climax stages, respec- tively). Then, the watershed soil erosion moduli at various stages were studied by using a revised universal soil loss equation. Our results show that the pioneer and climax stages are the extreme states of watershed soil-and-water conservation and control; in the pioneer stage the soil erosion modulus was 299.56 t.ha-l.a 1 above the edge of gully, 136.64 t.ha-La-1 below the edge of gully, and 229.74 t.ha-~.a-~ on average; in the climax stage, the soil erosion modulus was 39.10 t.ha .a-1 above the edge of gully, 1.10 t.ha-La-1 below the edge of gully, and 22.81 t-ha-La-1 on average; in the intermediate stage, the soil erosion modulus above the edge of gully exhibited an exponential decline along with the increase in terraced field area percentage, while the soil erosion modulus below the edge of gully exhibited a linear decline along with the increase in siltation height. 展开更多
关键词 soil-and-water conservation Revised universal Soil Loss Equation SUCCESSION the Loess Plateau
原文传递
Land use change and soil erosion in the Maotiao River watershed of Guizhou Province 被引量:10
15
作者 XU Yueqing LUO Ding PENG Jian 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期1138-1152,共15页
Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwes... Due to the extremely poor soil cover, a low soil-forming rate, and inappropriate intensive land use, soil erosion is a serious problem in Guizhou Province, which is located in the centre of the karst areas of Southwest China. In order to bring soil erosion under control and restore environment, the Chinese Government has initiated a serious of ecological re- habilitation projects such as the Grain-for-Green Programme and Natural Forest Protection Program and brought about tremendous influences on land-use change and soil erosion in Guizhou Province. This paper explored the relationship between land use and soil erosion in the Maotiao River watershed, a typical agricultural area with severe soil erosion in central Guizhou Province. In this study, we analyzed the spatio-temporal dynamic change of land-use type in Maotiao River watershed from 1973 to 2007 using Landsat MSS image in 1973, Landsat TM data in 1990 and 2007. Soil erosion change characteristics from 1973 to 2007, and soil loss among different land-use types were examined by integrating the Revised Universal Soil Loss Equation (RUSLE) with a GIS environment. The results indicate that changes in land use within the watershed have significantly affected soil erosion. From 1973 to 1990, dry farmland and rocky desertified land significantly increased. In contrast, shrubby land, other forestland and grassland significantly decreased, which caused accelerated soil erosion in the study area. This trend was reversed from 1990 to 2007 with an increased area of land-use types for ecological use owing to the implementation of environmental protection programs. Soil erosion also significantly varied among land-use types. Erosion was most serious in dry farmland and the lightest in paddy field. Dry farmland with a gradient of 6°-25° was the major contributor to soil erosion, and conservation practices should be taken in these areas. The results of this study provide useful information for decision makers and planners to take sustainable land use management and soil conservation measures in the area. 展开更多
关键词 land-use change land-use type soil erosion Revised universal Soil Loss Equation Guizhou Provinceof China
原文传递
Climate change and land degradation in Africa: a case study in the Mount Elgon region, Uganda 被引量:2
16
作者 Boyi JIANG Yazidhi BAMUTAZE Petter PILESJO 《Geo-Spatial Information Science》 SCIE EI 2014年第1期39-53,共15页
The aim of this study is to estimate and compare soil erosion,in the Mount Elgon region,eastern Uganda,during the last decade.Possible trends and changes in erosion are linked to precipitation/climate change as well a... The aim of this study is to estimate and compare soil erosion,in the Mount Elgon region,eastern Uganda,during the last decade.Possible trends and changes in erosion are linked to precipitation/climate change as well as changes in land cover.Two different versions of the Revised Universal Soil loss Equation(RUSLE)are implemented and compared,one using slope length and the other using flow accumulation to estimate the slope length and steepness factor(LS).Comparisons of the modeled soil erosion vs.field data indicate that RUSLE based on flow accumulation is preferable.The modeling is carried out for the years 2000,2006,and 2012,and is based on ASTER remotely sensed data,digital elevation models,precipitation data from the study area,as well as existing soil maps.No significant trends in estimated soil erosion are found to be present during the last decade.Over exploitation of land is probably compensated by improved agricultural management and no significant increase in precipitation.Even if there are reports of more intense and increasing amounts of rainfall in the area,this could not be verified,neither through the analysis of climate data,nor by trends in the estimated soil loss. 展开更多
关键词 soil erosion revised universal soil loss equation(RUSLE) ASTER Uganda climate change
原文传递
National assessment of soil erosion and its spatial patterns in China 被引量:2
17
作者 Enming Rao Yi Xiao +1 位作者 Zhiyun Ouyang Xinxiao Yu 《Ecosystem Health and Sustainability》 SCIE 2015年第4期29-39,共11页
The spatial patterns of soil erosion(SE)are an important part of ecological security patterns and critical to erosion control.We assessed the SE and its spatial distribution in China based on geographic information sy... The spatial patterns of soil erosion(SE)are an important part of ecological security patterns and critical to erosion control.We assessed the SE and its spatial distribution in China based on geographic information system(GIS)and spatial data sets using the Universal Soil Loss Equation(USLE).The soil erosion area(SEA)and soil erosion amount(SEM)totaled 173.06 million ha and 8.87 billion Mg,respectively,with an average soil erosion rate(SER)of 9.39 Mg·ha^(-1)·yr^(-1).Slight erosion dominated from the aspect of SEA,whereas extreme erosion contributed the most in terms of SEM.Spatial heterogeneity in soil erosion was obvious in China,with heavily eroded areas mainly concentrated in the Loess Plateau,the Three Gorges reservoir area,and the hot,dry valley of the Jinsha River.Regionally,the provinces of Tibet,Sichuan,Yunnan,Xinjiang,Inner Mongolia,Gansu,Shaanxi,Shanxi,Guizhou,and Guangxi,and the basins of the Yangtze River,Yellow River,and southwestern rivers made a large contribution to the SEA and SEM.Geographically,soil erosion increased,then decreased with increasing slope and elevation.Slopes of 15-25°and 8-15°and elevations of 1000-2000 m were the most seriously eroded.Cropland and grassland ecosystems were major sources of SE,with their SEA and SEM accounting for 64.44%and 77.96%of the total.This study revealed the current situation and spatial characteristics of SE in China on the national scale,which can serve as a scientific basis for regional SE control and decision-making policy. 展开更多
关键词 China erosion rate GIS national risk assessment soil erosion spatial pattern universal Soil Loss Equation
原文传递
The development of U.S.soil erosion prediction and modeling 被引量:2
18
作者 John M.Laflen Dennis C.Flanagan 《International Soil and Water Conservation Research》 SCIE 2013年第2期1-11,共11页
Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion(by water)and land slope and length,followed shortly by a relationship by Dwight Smith that exp... Soil erosion prediction technology began over 70 years ago when Austin Zingg published a relationship between soil erosion(by water)and land slope and length,followed shortly by a relationship by Dwight Smith that expanded this equation to include conservation practices.But,it was nearly 20 years before this work's expansion resulted in the Universal Soil Loss Equation(USLE),perhaps the foremost achievement in soil erosion prediction in the last century.The USLE has increased in application and complexity,and its usefulness and limitations have led to the development of additional technologies and new science in soil erosion research and prediction.Main among these new technologies is the Water Erosion Prediction Project(WEPP)model,which has helped to overcome many of the shortcomings of the USLE,and increased the scale over which erosion by water can be predicted.Areas of application of erosion prediction include almost all land types:urban,rural,cropland,forests,rangeland,and construction sites.Specialty applications of WEPP include prediction of radioactive material movement with soils at a superfund cleanup site,and near real-time daily estimation of soil erosion for the entire state of Iowa. 展开更多
关键词 universal Soil Loss Equation Water Erosion Prediction Project Soil erosion Erosion prediction History of erosion prediction
原文传递
Estimating landscape susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia 被引量:1
19
作者 Lulseged Tamene Zenebe Adimassu +1 位作者 Ermias Aynekulu Tesfaye Yaekob 《International Soil and Water Conservation Research》 SCIE CSCD 2017年第3期221-230,共10页
Soil erosion is a very critical form of land degradation resulting in the loss of soil nutrients and downstream sedimentation of water storages in the highlands of Ethiopia.As it is technically and financially impossi... Soil erosion is a very critical form of land degradation resulting in the loss of soil nutrients and downstream sedimentation of water storages in the highlands of Ethiopia.As it is technically and financially impossible to conserve all landscapes affected by erosion,identification of priority areas of intervention is necessary.Spatially distributed erosion models can help map landscape susceptibility to erosion and identify high erosion risk areas.Integration of erosion models with geographic information systems(GIS)enables assessing evaluate the spatial variability of soil erosion and plan implementing conservation measures at landscape levels.In this study,the Revised Universal Soil Loss Equation adjusted for sediment delivery ratio was used in a GIS system to assess landscape sensitivity to erosion and identify hotspots.The approach was applied in three catchments with size being 10–20 km^(2) and results were compared against quantitative and semi-quantitative data.The model estimated mean soil loss rates of about 45 t ha^(−1) y^(−1) with an average variability of 30%between catchments.The estimated soil loss rate is above the tolerable limit of 10 t ha^(−1) y^(−1).The model predicted high soil loss rates at steep slopes and shoulder positions as well as along gullies.The results of the study demonstrate that knowledge of spatial patterns of high soil loss risk areas can help deploy site-specific conservation measures. 展开更多
关键词 Revised universal soil loss equation Sediment delivery ratio Hot-spot areas WATERSHED Sediment deposition
原文传递
OPERATOR-SPLITTING METHOD FOR ANALYSIS OF CAVITATION IN LIQUID-LUBRICATED HERRINGBONE GROOVED JOURNAL BEARING 被引量:1
20
作者 LeeT.S. ShuC. 《Journal of Hydrodynamics》 SCIE EI CSCD 2002年第4期95-101,共7页
This paper presents an Operator -Splitting Method (OSM) for the solution of the universal Reynolds equation. Jakoobsson-Floberg-Olsson (JFO) pressure conditions were incorporated for the study of cavitation in a liqui... This paper presents an Operator -Splitting Method (OSM) for the solution of the universal Reynolds equation. Jakoobsson-Floberg-Olsson (JFO) pressure conditions were incorporated for the study of cavitation in a liquid-lubricated journal bearings. Shear flow component of the oil film was first solved by a modified upwind finite difference method. The solution of the pressure gradient flow component was completed by the Galerkin finite element method. Present OSM solutions for a slider bearing are in agreement with Elord's results. OSM was then applied to herringbone grooved journal bearing in this work. The film pressure, cavitation areas, load capacity and attitude angle were obtained with JFO pressure conditions. The calculated load capacities are in agreement with Hirs's experimental data. A comparison of the present results and those predicted by the Reynolds pressure conditions shows some differences. The numerical results indicate that the load capacity and the critical mass of journal (linear stability indicator) are higher, and the attitude angle is lower than those predicted by Reynolds pressure conditions in cases of high eccentricities. 展开更多
关键词 universal Reynolds equation herringbone grooved journal bearing Operator-Splitting Method (OSM)
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部