Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of ...Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of artificial neural networks to learn complex patterns through nonlinearity.Various activation functions are being studied to solve problems such as vanishing gradients and dying nodes that may occur in the deep learning process.However,it takes a lot of time and effort for researchers to use the existing activation function in their research.Therefore,in this paper,we propose a universal activation function(UA)so that researchers can easily create and apply various activation functions and improve the performance of neural networks.UA can generate new types of activation functions as well as functions like traditional activation functions by properly adjusting three hyperparameters.The famous Convolutional Neural Network(CNN)and benchmark datasetwere used to evaluate the experimental performance of the UA proposed in this study.We compared the performance of the artificial neural network to which the traditional activation function is applied and the artificial neural network to which theUA is applied.In addition,we evaluated the performance of the new activation function generated by adjusting the hyperparameters of theUA.The experimental performance evaluation results showed that the classification performance of CNNs improved by up to 5%through the UA,although most of them showed similar performance to the traditional activation function.展开更多
Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical com...Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.展开更多
Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are o...Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.展开更多
This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of ...This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of functions analytic on the open unit disk.展开更多
The main goal of this article is to present a new result of a possible approach to the geometrical description of the birth and evolution of the universe. The novelty of the article is that it is possible to explain t...The main goal of this article is to present a new result of a possible approach to the geometrical description of the birth and evolution of the universe. The novelty of the article is that it is possible to explain the nature of supersymmetry in terms of the geometric representation of the wave function and to propose a mechanism of spontaneous symmetry breaking of the excitation of the universe with different degrees of freedom. It is under such conditions that the well-known spontaneous symmetry breaking occurs and individual excitation acquires mass. At the same time, a phase transition of the first kind occurs with the formation of a new phase.展开更多
In the present paper, an efficient algorithm based on the continued fractions theory was established for the universal Y’s functions of space dynamics. The algorithm is valid for any conic motion (elliptic, parabolic...In the present paper, an efficient algorithm based on the continued fractions theory was established for the universal Y’s functions of space dynamics. The algorithm is valid for any conic motion (elliptic, parabolic or hyperbolic).展开更多
Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning me...Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning method are introduced, and then the function modeling algorithm based on the universal triple I fuzzy reasoning method is proposed. Firstly, the product function granular model based on the quotient space theory is built, with its function granular representation and computing rules defined at the same time. Secondly, in order to quickly achieve function granular model from function requirement, the function modeling method based on universal triple I fuzzy reasoning is put forward. Within the fuzzy reasoning of universal triple I method, the small-distance-activating method is proposed as the kernel of fuzzy reasoning; how to change function requirements to fuzzy ones, fuzzy computing methods, and strategy of fuzzy reasoning are respectively investigated as well; the function modeling algorithm based on the universal triple I fuzzy reasoning method is achieved. Lastly, the validity of the function granular model and function modeling algorithm is validated. Through our method, the reasonable function granular model can be quickly achieved from function requirements, and the fuzzy character of conceptual design can be well handled, which greatly improves conceptual design.展开更多
By using a function with a phase factor,a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtaine...By using a function with a phase factor,a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtained by adjusting the phase factor.The spectroscopic parameters of ten diatomic molecules are calculated by using the potential energy function;as a consequence,all calculation results are in good agreement with experimental data.展开更多
In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-str...In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.展开更多
The multiverse is a hypothesis created to solve certain problems in cosmology. Currently, this scheme is still largely ad hoc, rather than derived from fundamental laws and principles. Because of this, the predictive ...The multiverse is a hypothesis created to solve certain problems in cosmology. Currently, this scheme is still largely ad hoc, rather than derived from fundamental laws and principles. Because of this, the predictive power of this theory is rather limited. Furthermore, there are concerns that this theory will make it impossible to calculate some measured quantities, such as the masses of quarks and the electron. In this paper, we will show that a new development in string theory, the universal wave function interpretation of string theory, provides a way to derive the mathematical expression of the multiverse. We will demonstrate that the Weyl invariance existing in string theory indicates that our observed universe is a projection from a hologram. We will present how the laws of physics can be derived from this fact. Furthermore, we suggest it may also provide a way to calculate the masses of fundamental particles such as quarks and the electron.展开更多
Inflation is the most commonly accepted theory in cosmology to explain why the universe appears flat, homogeneous, and isotropic, as well as the origin of the large-scale structure of the cosmos and why no magnetic mo...Inflation is the most commonly accepted theory in cosmology to explain why the universe appears flat, homogeneous, and isotropic, as well as the origin of the large-scale structure of the cosmos and why no magnetic monopoles have been detected. However, so far, the origin of the inflation epoch and what is the hypothetical field, the inflation, giving rise to inflation, remains unknown. String theory is one of the promising candidates for the grand unification theory. Grand unification theory is to use one mathematic formula to describe everything. In this work, we study the inflation scheme in a new development in string theory, UWFIST (universal wave function interpretation of string theory). We show that from UWFIST we can derive from the fundamental theory that the long-range vibration is the possible candidate of inflation. We estimate the vacuum energy created by the long-range vibration and show that it can indeed drive the inflation.展开更多
A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress an...A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method展开更多
After the summarization of the development of the university park in China,it is considered that there existed a large gap between the actuality and construction objective of the university park.In order to help the u...After the summarization of the development of the university park in China,it is considered that there existed a large gap between the actuality and construction objective of the university park.In order to help the university park walk out of the development dilemma,it needs to conduct adjustment and transformation to realize sustainable and healthy development.Through thorough demonstration,suggestions and countermeasures for functional transition of the university park have been proposed from the perspective of functional localization,resources sharing,development mode and management system.In functional localization,education industry should be developed in new urban area;in resources sharing,the university park should be developed into an organic entity;in development mode,the university park should develop integratedly;in management system,it should achieve the transition from the traditional to innovative type.展开更多
Role-play is recommended as a useful method to solve the problem of oral English teaching. It's much more than a performance and it can be considered as a way to vary the kinds of spoken interaction that learners ...Role-play is recommended as a useful method to solve the problem of oral English teaching. It's much more than a performance and it can be considered as a way to vary the kinds of spoken interaction that learners can experience in the classroom of universities. Through the use of role-play, oral English teaching becomes more interesting and attractive; university students can gain more oral English skills in the mini society atmosphere, and the accuracy and fluency of their oral English will be improved.展开更多
The fusion barriers and cross sections of 15 colliding systems with 320≤Z_(1)Z_(2)≤1512 are investigated in detail to understand the influence of the universal function of proximity potential formalism in the heavy-...The fusion barriers and cross sections of 15 colliding systems with 320≤Z_(1)Z_(2)≤1512 are investigated in detail to understand the influence of the universal function of proximity potential formalism in the heavy-ion fusion mechanism.To realize this goal,we select three versions of the phenomenological proximity potentials,including Prox.77,Zhang 2013,and Guo 2013,to calculate the nucleus-nucleus potential.The experimental fusion cross sections for the selected reactions are analyzed using the standard coupled-channel calculations,including couplings to the low-lying 2^(+)and 3^(-)states in the target and projectile.The calculated results show that the universal functions of the Guo 2013 and Prox.77 models provide the lowest and highest fusion barriers,respectively.In addition,it is found that the height of the fusion barriers is enhanced by increasing the mass number of the projectile from light to heavy ones.The highest sensitivity to the mass number of the projectile belongs to the results of Prox.77.A discussion is also presented on the influence of the universal function on the radial behavior of the interaction potential in the allowed region for overlapping configurations.Our results reveal that the best fit to the experimental data of the fusion cross sections for the reactions involving light and medium nuclei is obtained using the universal function of the Zhang 2013 model.For the heavier systems,the results of the Guo 2013 model at sub-barrier energies provide a good description of the available data.展开更多
Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence,but how to achieve this fantastic and challenging objective remains elusive.Here,we ...Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence,but how to achieve this fantastic and challenging objective remains elusive.Here,we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian(Deep H),enabling computational modeling of the complicated structure-property relationship of materials in general.By constructing a large materials database and substantially improving the Deep H method,we obtain a universal materials model of Deep H capable of handling diverse elemental compositions and material structures,achieving remarkable accuracy in predicting material properties.We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models.This work not only demonstrates the concept of Deep H's universal materials model but also lays the groundwork for developing large materials models,opening up significant opportunities for advancing artificial intelligencedriven materials discovery.展开更多
Functionally gradient materials(FGMs)have attracted tremendous attention due to their unique properties and structures.However,it is still a great challenge to prepare scalable FGMs by a universal,cost-effective,and h...Functionally gradient materials(FGMs)have attracted tremendous attention due to their unique properties and structures.However,it is still a great challenge to prepare scalable FGMs by a universal,cost-effective,and highly efficient method.Here,a strategy of combining in situ concentration regulation and spraying is developed to fabricate continuously gradient composite films(GCFs),where the component gradient variation can be well controlled.This strategy is universal and versatile,which is beneficial to inducing different components into GCFs with gradient distributions and further constructing them with diverse configurations on various substrates.The gradient design endows the composite films with excellent mechanical strength and gradient electron transport pathways,which ensures that GCFs directly serve as the electrodes in electrochemical devices.As a proof of concept,free-standing GCFs based on V2O5 nanomaterials are used as cathodes of aqueous zinc-ion batteries.The resultant devices deliver superior electrochemical performances in comparison with the counterparts of homogeneous case.Therefore,this universal strategy provides a promising route in the scalable production of FGMs and further extends their applications in various fields.展开更多
In essence,universities are part of the national education system and university culture is a“subculture”of the national culture.In the era of development and integration,the existence of the university network ther...In essence,universities are part of the national education system and university culture is a“subculture”of the national culture.In the era of development and integration,the existence of the university network therefore certainly has a dialectical relationship with objective requirements both in terms of education and culture—the rule of laws and inevitable conditions for that existence and development,is the basic content of the university cultural function.It includes general functions(social and cultural functions)related to the location,nature,characteristics of the university in social life and is relevant both to the present,the past,and the future;specific functions(educational organizational functions)related to teaching,learning,scientific research,management organization—direct activities for the existence and development of the university itself as an educational institution.The article is approached from the reality of Vietnam and based on the perspective of Culturology(combining Pedagogics and some other disciplines)in order to initially analyze and clarify the specific contents of these functional relations,especially about the interaction effect from those functions.展开更多
The wave function for the spin the early universe is obtained through the adaption of the quantum formalism to one solution of the Wheeler-DeWitt’s equation [1], associated with the wave function of the universe. In ...The wave function for the spin the early universe is obtained through the adaption of the quantum formalism to one solution of the Wheeler-DeWitt’s equation [1], associated with the wave function of the universe. In addition, some observations performed by Stephen Hawking in relation to the vorticity of the universe [2] are used. This wave function for the spin could be used for indirectly to demonstrate the presence of dark matter in the universe.展开更多
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1F1A1062953).
文摘Recently,deep learning has achieved remarkable results in fields that require human cognitive ability,learning ability,and reasoning ability.Activation functions are very important because they provide the ability of artificial neural networks to learn complex patterns through nonlinearity.Various activation functions are being studied to solve problems such as vanishing gradients and dying nodes that may occur in the deep learning process.However,it takes a lot of time and effort for researchers to use the existing activation function in their research.Therefore,in this paper,we propose a universal activation function(UA)so that researchers can easily create and apply various activation functions and improve the performance of neural networks.UA can generate new types of activation functions as well as functions like traditional activation functions by properly adjusting three hyperparameters.The famous Convolutional Neural Network(CNN)and benchmark datasetwere used to evaluate the experimental performance of the UA proposed in this study.We compared the performance of the artificial neural network to which the traditional activation function is applied and the artificial neural network to which theUA is applied.In addition,we evaluated the performance of the new activation function generated by adjusting the hyperparameters of theUA.The experimental performance evaluation results showed that the classification performance of CNNs improved by up to 5%through the UA,although most of them showed similar performance to the traditional activation function.
文摘Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.
基金This work was supported by the National Natural Science Foundation of China (No. 40274044).
文摘Using a field equation with a phase factor, a universal analytic potential-energy function applied to the interactions between diatoms or molecules is derived, and five kinds of potential curves of common shapes are obtained adjusting the phase factors. The linear thermal expansion coefficients and Young's moduli of eleven kinds of face-centered cubic (fcc) metals - Al, Cu, Ag, etc. are calculated using the potential-energy function; the computational results are quite consistent with experimental values. Moreover, an analytic relation between the linear thermal expansion coefficients and Young's moduli of fcc metals is given using the potential-energy function. Finally, the force constants of fifty-five kinds of diatomic moleculars with low excitation state are computed using this theory, and they are quite consistent with RKR (Rydberg-Klein-Rees) experimental values.
文摘This article derives the relation between universal interpolating sequences and some spectral properties of the multiplication operator by the independent variable z in case the underlying space is a Hilbert space of functions analytic on the open unit disk.
文摘The main goal of this article is to present a new result of a possible approach to the geometrical description of the birth and evolution of the universe. The novelty of the article is that it is possible to explain the nature of supersymmetry in terms of the geometric representation of the wave function and to propose a mechanism of spontaneous symmetry breaking of the excitation of the universe with different degrees of freedom. It is under such conditions that the well-known spontaneous symmetry breaking occurs and individual excitation acquires mass. At the same time, a phase transition of the first kind occurs with the formation of a new phase.
文摘In the present paper, an efficient algorithm based on the continued fractions theory was established for the universal Y’s functions of space dynamics. The algorithm is valid for any conic motion (elliptic, parabolic or hyperbolic).
基金Supported by Chinese National Science Foundation(61070124)Fundamental Research Funds for the Central Universities(2010HGBZ0565, 2010HGZY0001)Talented Youth Foundation of Anhui universities(2010SQRL013ZD)
文摘Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning method are introduced, and then the function modeling algorithm based on the universal triple I fuzzy reasoning method is proposed. Firstly, the product function granular model based on the quotient space theory is built, with its function granular representation and computing rules defined at the same time. Secondly, in order to quickly achieve function granular model from function requirement, the function modeling method based on universal triple I fuzzy reasoning is put forward. Within the fuzzy reasoning of universal triple I method, the small-distance-activating method is proposed as the kernel of fuzzy reasoning; how to change function requirements to fuzzy ones, fuzzy computing methods, and strategy of fuzzy reasoning are respectively investigated as well; the function modeling algorithm based on the universal triple I fuzzy reasoning method is achieved. Lastly, the validity of the function granular model and function modeling algorithm is validated. Through our method, the reasonable function granular model can be quickly achieved from function requirements, and the fuzzy character of conceptual design can be well handled, which greatly improves conceptual design.
基金This work was supported by the National Natural Science Foundation of China(No.40274044)
文摘By using a function with a phase factor,a universal analytic potential energy function applied to the interactions between diatoms or molecules is derived and six kinds of potential curves of common shapes are obtained by adjusting the phase factor.The spectroscopic parameters of ten diatomic molecules are calculated by using the potential energy function;as a consequence,all calculation results are in good agreement with experimental data.
基金National Natural Science Foundation of China(No.51265025)
文摘In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.
文摘The multiverse is a hypothesis created to solve certain problems in cosmology. Currently, this scheme is still largely ad hoc, rather than derived from fundamental laws and principles. Because of this, the predictive power of this theory is rather limited. Furthermore, there are concerns that this theory will make it impossible to calculate some measured quantities, such as the masses of quarks and the electron. In this paper, we will show that a new development in string theory, the universal wave function interpretation of string theory, provides a way to derive the mathematical expression of the multiverse. We will demonstrate that the Weyl invariance existing in string theory indicates that our observed universe is a projection from a hologram. We will present how the laws of physics can be derived from this fact. Furthermore, we suggest it may also provide a way to calculate the masses of fundamental particles such as quarks and the electron.
文摘Inflation is the most commonly accepted theory in cosmology to explain why the universe appears flat, homogeneous, and isotropic, as well as the origin of the large-scale structure of the cosmos and why no magnetic monopoles have been detected. However, so far, the origin of the inflation epoch and what is the hypothetical field, the inflation, giving rise to inflation, remains unknown. String theory is one of the promising candidates for the grand unification theory. Grand unification theory is to use one mathematic formula to describe everything. In this work, we study the inflation scheme in a new development in string theory, UWFIST (universal wave function interpretation of string theory). We show that from UWFIST we can derive from the fundamental theory that the long-range vibration is the possible candidate of inflation. We estimate the vacuum energy created by the long-range vibration and show that it can indeed drive the inflation.
基金supported by the Foundation of Hunan Provincial Natural Science of China(13JJ6095,2015JJ2015)the Key Project of Science and Technology Program of Changsha,China(ZD1601010)
文摘A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method
文摘After the summarization of the development of the university park in China,it is considered that there existed a large gap between the actuality and construction objective of the university park.In order to help the university park walk out of the development dilemma,it needs to conduct adjustment and transformation to realize sustainable and healthy development.Through thorough demonstration,suggestions and countermeasures for functional transition of the university park have been proposed from the perspective of functional localization,resources sharing,development mode and management system.In functional localization,education industry should be developed in new urban area;in resources sharing,the university park should be developed into an organic entity;in development mode,the university park should develop integratedly;in management system,it should achieve the transition from the traditional to innovative type.
文摘Role-play is recommended as a useful method to solve the problem of oral English teaching. It's much more than a performance and it can be considered as a way to vary the kinds of spoken interaction that learners can experience in the classroom of universities. Through the use of role-play, oral English teaching becomes more interesting and attractive; university students can gain more oral English skills in the mini society atmosphere, and the accuracy and fluency of their oral English will be improved.
文摘The fusion barriers and cross sections of 15 colliding systems with 320≤Z_(1)Z_(2)≤1512 are investigated in detail to understand the influence of the universal function of proximity potential formalism in the heavy-ion fusion mechanism.To realize this goal,we select three versions of the phenomenological proximity potentials,including Prox.77,Zhang 2013,and Guo 2013,to calculate the nucleus-nucleus potential.The experimental fusion cross sections for the selected reactions are analyzed using the standard coupled-channel calculations,including couplings to the low-lying 2^(+)and 3^(-)states in the target and projectile.The calculated results show that the universal functions of the Guo 2013 and Prox.77 models provide the lowest and highest fusion barriers,respectively.In addition,it is found that the height of the fusion barriers is enhanced by increasing the mass number of the projectile from light to heavy ones.The highest sensitivity to the mass number of the projectile belongs to the results of Prox.77.A discussion is also presented on the influence of the universal function on the radial behavior of the interaction potential in the allowed region for overlapping configurations.Our results reveal that the best fit to the experimental data of the fusion cross sections for the reactions involving light and medium nuclei is obtained using the universal function of the Zhang 2013 model.For the heavier systems,the results of the Guo 2013 model at sub-barrier energies provide a good description of the available data.
基金supported by the Basic Science Center Project of National Natural Science Foundation of China(52388201)the National Natural Science Foundation of China(12334003)+4 种基金the National Science Fund for Distinguished Young Scholars(12025405)the National Key Basic Research and Development Program of China(2023YFA1406400)the Beijing Advanced Innovation Center for Future Chip(ICFC)the Beijing Advanced Innovation Center for Materials Genome Engineeringfunded by the Shuimu Tsinghua Scholar program。
文摘Realizing large materials models has emerged as a critical endeavor for materials research in the new era of artificial intelligence,but how to achieve this fantastic and challenging objective remains elusive.Here,we propose a feasible pathway to address this paramount pursuit by developing universal materials models of deep-learning density functional theory Hamiltonian(Deep H),enabling computational modeling of the complicated structure-property relationship of materials in general.By constructing a large materials database and substantially improving the Deep H method,we obtain a universal materials model of Deep H capable of handling diverse elemental compositions and material structures,achieving remarkable accuracy in predicting material properties.We further showcase a promising application of fine-tuning universal materials models for enhancing specific materials models.This work not only demonstrates the concept of Deep H's universal materials model but also lays the groundwork for developing large materials models,opening up significant opportunities for advancing artificial intelligencedriven materials discovery.
基金Ministry of Science and Technology of China,Grant/Award Number:2019YFA0705600National Natural Science Foundation of China,Grant/Award Numbers:21875121,51822205,51972231+2 种基金Ministry of Education of China,Grant/Award Number:B12015Natural Science Foundation of Tianjin City,Grant/Award Numbers:18JCJQJC46300,19JCZDJC31900Frontiers Science Center for New Organic Matter of Nankai University,Grant/Award Number:63181206。
文摘Functionally gradient materials(FGMs)have attracted tremendous attention due to their unique properties and structures.However,it is still a great challenge to prepare scalable FGMs by a universal,cost-effective,and highly efficient method.Here,a strategy of combining in situ concentration regulation and spraying is developed to fabricate continuously gradient composite films(GCFs),where the component gradient variation can be well controlled.This strategy is universal and versatile,which is beneficial to inducing different components into GCFs with gradient distributions and further constructing them with diverse configurations on various substrates.The gradient design endows the composite films with excellent mechanical strength and gradient electron transport pathways,which ensures that GCFs directly serve as the electrodes in electrochemical devices.As a proof of concept,free-standing GCFs based on V2O5 nanomaterials are used as cathodes of aqueous zinc-ion batteries.The resultant devices deliver superior electrochemical performances in comparison with the counterparts of homogeneous case.Therefore,this universal strategy provides a promising route in the scalable production of FGMs and further extends their applications in various fields.
文摘In essence,universities are part of the national education system and university culture is a“subculture”of the national culture.In the era of development and integration,the existence of the university network therefore certainly has a dialectical relationship with objective requirements both in terms of education and culture—the rule of laws and inevitable conditions for that existence and development,is the basic content of the university cultural function.It includes general functions(social and cultural functions)related to the location,nature,characteristics of the university in social life and is relevant both to the present,the past,and the future;specific functions(educational organizational functions)related to teaching,learning,scientific research,management organization—direct activities for the existence and development of the university itself as an educational institution.The article is approached from the reality of Vietnam and based on the perspective of Culturology(combining Pedagogics and some other disciplines)in order to initially analyze and clarify the specific contents of these functional relations,especially about the interaction effect from those functions.
文摘The wave function for the spin the early universe is obtained through the adaption of the quantum formalism to one solution of the Wheeler-DeWitt’s equation [1], associated with the wave function of the universe. In addition, some observations performed by Stephen Hawking in relation to the vorticity of the universe [2] are used. This wave function for the spin could be used for indirectly to demonstrate the presence of dark matter in the universe.