A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure...As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.展开更多
Extensive numerical simulations and scaling analysis are performed to investigate competitive growth between the linear and nonlinear stochastic dynamic growth systems, which belong to the Edwards–Wilkinson(EW) and K...Extensive numerical simulations and scaling analysis are performed to investigate competitive growth between the linear and nonlinear stochastic dynamic growth systems, which belong to the Edwards–Wilkinson(EW) and Kardar–Parisi–Zhang(KPZ) universality classes, respectively. The linear growth systems include the EW equation and the model of random deposition with surface relaxation(RDSR), the nonlinear growth systems involve the KPZ equation and typical discrete models including ballistic deposition(BD), etching, and restricted solid on solid(RSOS). The scaling exponents are obtained in both the(1 + 1)-and(2 + 1)-dimensional competitive growth with the nonlinear growth probability p and the linear proportion 1-p. Our results show that, when p changes from 0 to 1, there exist non-trivial crossover effects from EW to KPZ universality classes based on different competitive growth rules. Furthermore, the growth rate and the porosity are also estimated within various linear and nonlinear growths of cooperation and competition.展开更多
We investigate the area distribution of clusters (loops) in the honeycomb O(n) loop model by means of the worm algorithm with n = 0.5, 1, 1.5, and 2. At the critical point, the number of clusters, whose enclosed a...We investigate the area distribution of clusters (loops) in the honeycomb O(n) loop model by means of the worm algorithm with n = 0.5, 1, 1.5, and 2. At the critical point, the number of clusters, whose enclosed area is greater than A, is proportional to A-1 with a proportionality constant C. We confirm numerically that C is universal, and its value agrees well with the predictions based on the Coulomb gas method.展开更多
The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural...The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。展开更多
Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used ...Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.展开更多
The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model g...The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model gives rise to energy bands, similar to those in semiconductor solid-state models. In this context, valence band holes are described as dark matter particles with a heavy effective mass. The conducting band, with a spontaneously symmetry-breaking energy profile, contains particles with several times lighter effective mass, which can represent luminous matter. Some possible analogies with solid-state physics, such as the comparison between dark and luminous matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Casimir energy, is calculated for a lattice with a large number of lattice nodes.展开更多
Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about pos...Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.展开更多
Against the backdrop of continuous development in the field of education,universities are encouraged to innovate their talent cultivation systems and objectives.The deep integration of industry and education has emerg...Against the backdrop of continuous development in the field of education,universities are encouraged to innovate their talent cultivation systems and objectives.The deep integration of industry and education has emerged as an effective strategy,aligning with the basic requirements of the new engineering education initiative and exerting a positive impact on socioeconomic development.However,an analysis of the current state of industry-education integration in universities reveals several issues that require optimization,affecting the ultimate effectiveness of integration.To optimize this phenomenon and achieve high-quality development,universities need to further explore the construction of a deep integration model of industry and education,adhering to corresponding principles to form a comprehensive system.On this basis,pathways for deep industry-education integration can be summarized.展开更多
With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching a...With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.展开更多
Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning me...Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning method are introduced, and then the function modeling algorithm based on the universal triple I fuzzy reasoning method is proposed. Firstly, the product function granular model based on the quotient space theory is built, with its function granular representation and computing rules defined at the same time. Secondly, in order to quickly achieve function granular model from function requirement, the function modeling method based on universal triple I fuzzy reasoning is put forward. Within the fuzzy reasoning of universal triple I method, the small-distance-activating method is proposed as the kernel of fuzzy reasoning; how to change function requirements to fuzzy ones, fuzzy computing methods, and strategy of fuzzy reasoning are respectively investigated as well; the function modeling algorithm based on the universal triple I fuzzy reasoning method is achieved. Lastly, the validity of the function granular model and function modeling algorithm is validated. Through our method, the reasonable function granular model can be quickly achieved from function requirements, and the fuzzy character of conceptual design can be well handled, which greatly improves conceptual design.展开更多
In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-str...In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.展开更多
We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis t...We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.展开更多
The modeling and motion control of a universal part feeder is addressed. The feeder consists of a flat plate (or called bed) and a part placed on the plate. The bed can vibrate side-by-side (in x axis), back and f...The modeling and motion control of a universal part feeder is addressed. The feeder consists of a flat plate (or called bed) and a part placed on the plate. The bed can vibrate side-by-side (in x axis), back and forth (in y axis), clockwise and counter clockwise (about z axis), actuated by three linear motors (voice coils). When the bed does these vibrations, the part placed on the plat will have position and/or orientation change due to the interaction between the two contact surfaces. By controlling the ways in which the plate vibrates, the position and orientation of the part can be controlled. The two vibration profiles of the bed are investigated in the research: the high-low vibration mode and the bang-bang vibration mode. The motion equations of the bed and the part as well as the control schemes for the high-low vibration mode are presented. Both simulation and real-time testing verify the system's dynamic model and indicate the feasibilities of the developed control laws.展开更多
A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. ...A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.展开更多
The distribution function is an important tool in the study of the stochastic variances. The normal distribution is very popular in the nature and our society. The idea of membership functions is the foundation of the...The distribution function is an important tool in the study of the stochastic variances. The normal distribution is very popular in the nature and our society. The idea of membership functions is the foundation of the fuzzy sets theory. While the fuzzy theory is widely used, the completely certain membership function that has no any fuzziness at all has been the bottleneck of the applications of this theory. Cloud models are the effective tools in transforming between qualitative concepts and their quantitative expressions. It can represent the fuzziness and randomness and their relations of uncertain concepts. Also cloud models can show the concept granularity in multi-scale spaces by the digital characteristic Entropy (En). The normal cloud model not only broadens the form conditions of the normal distribution but also makes the normal membership function be the expectation of the random membership degree. In this paper, the universality of the normal cloud model is proved, which is more superior and easier, and can fit the fuzziness and gentleness of human cognitive processing. It would be more applicable and universal in the representation of uncertain notions.展开更多
A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress an...A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method展开更多
Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an ...Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.展开更多
Lacuna and Universal Model provides a new terminology and classification for the factors behind the success and failure of cross-cultural media content,and thus forms an analysis framework for the study of the cross-c...Lacuna and Universal Model provides a new terminology and classification for the factors behind the success and failure of cross-cultural media content,and thus forms an analysis framework for the study of the cross-cultural audiences'need.According to this model,the audience will dislike or not select foreign media content under these circumstances:(1)audiences find that the content is irrelevant or unsuitable;(2)audiences cannot comprehend the content;3)they do not like the style of such content.This model also argues that cross-cultural media content is successfully spread under these circumstances:(1)the media content shows attractive attribute to cross-cultural audience;(2)the media content is open to alternative readings.展开更多
This paper firstly discusses five models of bilingual education experimented or applied in different countries of the world.Then it puts forward two feasible models of classroom bilingual instruction—the high level a...This paper firstly discusses five models of bilingual education experimented or applied in different countries of the world.Then it puts forward two feasible models of classroom bilingual instruction—the high level and the low level.Finally it tentatively points out the course criteria of classroom bilingual instruction in Chinese universities,which are believed to be of considerable reference value to bilingual instruction in China.展开更多
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
基金supported by the National Natural Science Foundation of China(No.62293481,No.62071058)。
文摘As a novel paradigm,semantic communication provides an effective solution for breaking through the future development dilemma of classical communication systems.However,it remains an unsolved problem of how to measure the information transmission capability for a given semantic communication method and subsequently compare it with the classical communication method.In this paper,we first present a review of the semantic communication system,including its system model and the two typical coding and transmission methods for its implementations.To address the unsolved issue of the information transmission capability measure for semantic communication methods,we propose a new universal performance measure called Information Conductivity.We provide the definition and the physical significance to state its effectiveness in representing the information transmission capabilities of the semantic communication systems and present elaborations including its measure methods,degrees of freedom,and progressive analysis.Experimental results in image transmission scenarios validate its practical applicability.
基金supported by Undergraduate Training Program for Innovation and Entrepreneurship of China University of Mining and Technology (CUMT)(Grant No. 202110290059Z)Fundamental Research Funds for the Central Universities of CUMT (Grant No. 2020ZDPYMS33)。
文摘Extensive numerical simulations and scaling analysis are performed to investigate competitive growth between the linear and nonlinear stochastic dynamic growth systems, which belong to the Edwards–Wilkinson(EW) and Kardar–Parisi–Zhang(KPZ) universality classes, respectively. The linear growth systems include the EW equation and the model of random deposition with surface relaxation(RDSR), the nonlinear growth systems involve the KPZ equation and typical discrete models including ballistic deposition(BD), etching, and restricted solid on solid(RSOS). The scaling exponents are obtained in both the(1 + 1)-and(2 + 1)-dimensional competitive growth with the nonlinear growth probability p and the linear proportion 1-p. Our results show that, when p changes from 0 to 1, there exist non-trivial crossover effects from EW to KPZ universality classes based on different competitive growth rules. Furthermore, the growth rate and the porosity are also estimated within various linear and nonlinear growths of cooperation and competition.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10975127)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20113402110040)
文摘We investigate the area distribution of clusters (loops) in the honeycomb O(n) loop model by means of the worm algorithm with n = 0.5, 1, 1.5, and 2. At the critical point, the number of clusters, whose enclosed area is greater than A, is proportional to A-1 with a proportionality constant C. We confirm numerically that C is universal, and its value agrees well with the predictions based on the Coulomb gas method.
基金funded by National Natural Science Foundation of China(Grant No.41972264)Zhejiang Provincial Natural Science Foundation of China(Grant No.LR22E080002)the Observation and Research Station of Geohazards in Zhejiang,Ministry of Natural Resources,China(Grant No.ZJDZGCZ-2021).
文摘The geometric characteristics of fractures within a rock mass can be inferred by the data sampling from boreholes or exposed surfaces.Recently,the universal elliptical disc(UED)model was developed to represent natural fractures,where the fracture is assumed to be an elliptical disc and the fracture orientation,rotation angle,length of the long axis and ratio of short-long axis lengths are considered as variables.This paper aims to estimate the fracture size-and azimuth-related parameters in the UED model based on the trace information from sampling windows.The stereological relationship between the trace length,size-and azimuth-related parameters of the UED model was established,and the formulae of the mean value and standard deviation of trace length were proposed.The proposed formulae were validated via the Monte Carlo simulations with less than 5%of error rate between the calculated and true values.With respect to the estimation of the size-and azimuth-related parameters using the trace length,an optimization method was developed based on the pre-assumed size and azimuth distribution forms.A hypothetical case study was designed to illustrate and verify the parameter estimation method,where three combinations of the sampling windows were used to estimate the parameters,and the results showed that the estimated values could agree well with the true values.Furthermore,a hypothetical three-dimensional(3D)elliptical fracture network was constructed,and the circular disc,non-UED and UED models were used to represent it.The simulated trace information from different models was compared,and the results clearly illustrated the superiority of the proposed UED model over the existing circular disc and non-UED models。
文摘Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.
文摘The article considers a conceptual universe model as a periodic lattice (network) with nodes defined by the wave function in a background-independent Hamiltonian based on their relations and interactions. This model gives rise to energy bands, similar to those in semiconductor solid-state models. In this context, valence band holes are described as dark matter particles with a heavy effective mass. The conducting band, with a spontaneously symmetry-breaking energy profile, contains particles with several times lighter effective mass, which can represent luminous matter. Some possible analogies with solid-state physics, such as the comparison between dark and luminous matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Casimir energy, is calculated for a lattice with a large number of lattice nodes.
文摘Bayesian inference model is an optimal processing of incomplete information that, more than other models, better captures the way in which any decision-maker learns and updates his degree of rational beliefs about possible states of nature, in order to make a better judgment while taking new evidence into account. Such a scientific model proposed for the general theory of decision-making, like all others in general, whether in statistics, economics, operations research, A.I., data science or applied mathematics, regardless of whether they are time-dependent, have in common a theoretical basis that is axiomatized by relying on related concepts of a universe of possibles, especially the so-called universe (or the world), the state of nature (or the state of the world), when formulated explicitly. The issue of where to stand as an observer or a decision-maker to reframe such a universe of possibles together with a partition structure of knowledge (i.e. semantic formalisms), including a copy of itself as it was initially while generalizing it, is not addressed. Memory being the substratum, whether human or artificial, wherein everything stands, to date, even the theoretical possibility of such an operation of self-inclusion is prohibited by pure mathematics. We make this blind spot come to light through a counter-example (namely Archimedes’ Eureka experiment) and explore novel theoretical foundations, fitting better with a quantum form than with fuzzy modeling, to deal with more than a reference universe of possibles. This could open up a new path of investigation for the general theory of decision-making, as well as for Artificial Intelligence, often considered as the science of the imitation of human abilities, while being also the science of knowledge representation and the science of concept formation and reasoning.
基金2023 Annual Project of the China Association for Construction Education“Research on the Development Path of Private Colleges and Industry Integration in Liaoning Province Under the Strategy of Intelligent Manufacturing Strong Province”(Project number:2023239)。
文摘Against the backdrop of continuous development in the field of education,universities are encouraged to innovate their talent cultivation systems and objectives.The deep integration of industry and education has emerged as an effective strategy,aligning with the basic requirements of the new engineering education initiative and exerting a positive impact on socioeconomic development.However,an analysis of the current state of industry-education integration in universities reveals several issues that require optimization,affecting the ultimate effectiveness of integration.To optimize this phenomenon and achieve high-quality development,universities need to further explore the construction of a deep integration model of industry and education,adhering to corresponding principles to form a comprehensive system.On this basis,pathways for deep industry-education integration can be summarized.
文摘With the continuous advancement of education informatization,Technological Pedagogical Content Knowledge(TPACK),as a new theoretical framework,provides a novel method for measuring teachers’informatization teaching ability.This study takes normal students of English majors from three ethnic universities as the research object,collects relevant data through questionnaires,and uses structural equation modeling to conduct data analysis and empirical research to investigate the differences in the TPACK levels of these students at different grades and the structural relationships among the elements in the TPACK structure.The technological pedagogical knowledge element of the TPACK structure was not obtained by exploratory factors analysis but through path analysis and structural equation modeling,the results show that the one-dimensional core knowledge of technological knowledge(TK),content knowledge(CK),and pedagogical knowledge(PK)have a positive effect on the two-dimensional interaction knowledge of technological content knowledge(TCK)and pedagogical content knowledge(PCK);furthermore,TCK and PCK have a positive effect on TPACK;and TK,CK,and PK indirectly affect TPACK through TCK and PCK.On this basis,suggestions are provided to ethnic colleges and universities to develop the TPACK knowledge competence of normal students of English majors.
基金Supported by Chinese National Science Foundation(61070124)Fundamental Research Funds for the Central Universities(2010HGBZ0565, 2010HGZY0001)Talented Youth Foundation of Anhui universities(2010SQRL013ZD)
文摘Aiming at the deficiencies of analysis capacity from different levels and fuzzy treating method in product function modeling of conceptual design, the theory of quotient space and universal triple I fuzzy reasoning method are introduced, and then the function modeling algorithm based on the universal triple I fuzzy reasoning method is proposed. Firstly, the product function granular model based on the quotient space theory is built, with its function granular representation and computing rules defined at the same time. Secondly, in order to quickly achieve function granular model from function requirement, the function modeling method based on universal triple I fuzzy reasoning is put forward. Within the fuzzy reasoning of universal triple I method, the small-distance-activating method is proposed as the kernel of fuzzy reasoning; how to change function requirements to fuzzy ones, fuzzy computing methods, and strategy of fuzzy reasoning are respectively investigated as well; the function modeling algorithm based on the universal triple I fuzzy reasoning method is achieved. Lastly, the validity of the function granular model and function modeling algorithm is validated. Through our method, the reasonable function granular model can be quickly achieved from function requirements, and the fuzzy character of conceptual design can be well handled, which greatly improves conceptual design.
基金National Natural Science Foundation of China(No.51265025)
文摘In practical engineering,sometimes the probability density functions( PDFs) of stress and strength can not be exactly determined,or only limited experiment data are available. In these cases,the traditional stress-strength interference( SSI) model based on classical probabilistic approach can not be used to evaluate reliabilities of components. To solve this issue, the traditional universal generating function( UGF) is introduced and then it is extended to represent the discrete interval-valued random variable.Based on the extended UGF,an improved discrete interval-valued SSI model is proposed, which has higher calculation precision compared with the existing methods. Finally,an illustrative case is given to demonstrate the validity of the proposed model.
基金国家自然科学基金,the State Key Laboratory of Laser of China
文摘We present a stochastic critical slope sandpile model, where the amount of grains that fall in an overturning event is stochastic variable. The model is local, conservative, and Abelian. We apply the moment analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. Numerical results show that this model, Oslo model, and one-dimensional Abelian Manna model have the same critical behavior although the three models have different stochastic toppling rules, which provides evidences suggesting that Abelian sandpile models with different stochastic toppling rules are in the same universality class.
文摘The modeling and motion control of a universal part feeder is addressed. The feeder consists of a flat plate (or called bed) and a part placed on the plate. The bed can vibrate side-by-side (in x axis), back and forth (in y axis), clockwise and counter clockwise (about z axis), actuated by three linear motors (voice coils). When the bed does these vibrations, the part placed on the plat will have position and/or orientation change due to the interaction between the two contact surfaces. By controlling the ways in which the plate vibrates, the position and orientation of the part can be controlled. The two vibration profiles of the bed are investigated in the research: the high-low vibration mode and the bang-bang vibration mode. The motion equations of the bed and the part as well as the control schemes for the high-low vibration mode are presented. Both simulation and real-time testing verify the system's dynamic model and indicate the feasibilities of the developed control laws.
文摘A projection of the Canadian population shows that in 2024 one in five Canadians will be over 65 years old. This shift forces designers to consider the entire lifetime of occupants during the design of new buildings. Universal Design (UD), which is a design that accommodates all people to the greatest extent possible and aging in place design that is deeply rooted in the principles of UD, aim to house people irrespective of their age, ability, and chronic health conditions. Building Information Modeling (BIM) significantly helps advance the development of the Architecture, Engineering, and Construction (AEC) industry in a more collaborative and automated way. Integrating BIM and UD allows designers to incorporate UD standards easily and efficiently at the conceptual design stage of buildings by using the functionalities and capabilities of BIM tools. Therefore, this study presents the development of an automated computer model to facilitate the adoption of UD standards and processes. The novelty highlighted in this model resides in the creation of an automated method that employs a newly created plug-in and databases to assist designers to incorporate UD standards at the conceptual stage in a timely and cost-effective manner. Furthermore, the study introduces the methodology consisting of collecting, categorizing, and storing data from various universal design and accessible design guidelines in the developed databases and developing new plug-ins in BIM tool to link the developed databases in order to automate the process of retrieving necessary information and components to help designers and owners select optimal design alternatives based on their predefined criteria.
文摘The distribution function is an important tool in the study of the stochastic variances. The normal distribution is very popular in the nature and our society. The idea of membership functions is the foundation of the fuzzy sets theory. While the fuzzy theory is widely used, the completely certain membership function that has no any fuzziness at all has been the bottleneck of the applications of this theory. Cloud models are the effective tools in transforming between qualitative concepts and their quantitative expressions. It can represent the fuzziness and randomness and their relations of uncertain concepts. Also cloud models can show the concept granularity in multi-scale spaces by the digital characteristic Entropy (En). The normal cloud model not only broadens the form conditions of the normal distribution but also makes the normal membership function be the expectation of the random membership degree. In this paper, the universality of the normal cloud model is proved, which is more superior and easier, and can fit the fuzziness and gentleness of human cognitive processing. It would be more applicable and universal in the representation of uncertain notions.
基金supported by the Foundation of Hunan Provincial Natural Science of China(13JJ6095,2015JJ2015)the Key Project of Science and Technology Program of Changsha,China(ZD1601010)
文摘A method for estimating the component reliability is proposed when the probability density functions of stress and strength can not be exactly determined. For two groups of finite experimental data about the stress and strength, an interval statistics method is introduced. The processed results are formulated as two interval-valued random variables and are graphically represented component reliability are proposed based on the by using two histograms. The lower and upper bounds of universal generating function method and are calculated by solving two discrete stress-strength interference models. The graphical calculations of the proposed reliability bounds are presented through a numerical example and the confidence of the proposed reliability bounds is discussed to demonstrate the validity of the proposed method. It is showed that the proposed reliability bounds can undoubtedly bracket the real reliability value. The proposed method extends the exciting universal generating function method and can give an interval estimation of component reliability in the case of lake of sufficient experimental data. An application example is given to illustrate the proposed method
文摘Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.
文摘Lacuna and Universal Model provides a new terminology and classification for the factors behind the success and failure of cross-cultural media content,and thus forms an analysis framework for the study of the cross-cultural audiences'need.According to this model,the audience will dislike or not select foreign media content under these circumstances:(1)audiences find that the content is irrelevant or unsuitable;(2)audiences cannot comprehend the content;3)they do not like the style of such content.This model also argues that cross-cultural media content is successfully spread under these circumstances:(1)the media content shows attractive attribute to cross-cultural audience;(2)the media content is open to alternative readings.
文摘This paper firstly discusses five models of bilingual education experimented or applied in different countries of the world.Then it puts forward two feasible models of classroom bilingual instruction—the high level and the low level.Finally it tentatively points out the course criteria of classroom bilingual instruction in Chinese universities,which are believed to be of considerable reference value to bilingual instruction in China.