Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the phys...Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the physical attendance ofthe populations of students, professors, employees, and other members on campus. This research proposes an automated scheduling approach that can help universities and schools comply with the social distancing regulations by providingassistance in avoiding huge assemblages of people. Furthermore, this paper proposes a novel course timetable-scheduling scheme based on four main constraints.First, a distance of two meters must be maintained between each student inside theclassroom. Second, no classrooms should contain more than 20% of their regularcapacity. Third, there would be no back-to-back classes. Lastly, no lectures shouldbe held simultaneously in adjacent classrooms. The proposed approach wasimplemented using a variable neighborhood search (VNS) approach with an adaptive neighborhood structure (AD-NS) to resolve the problem of scheduling coursetimetables at Al-Ahlyyia Amman University. However, the experimental resultsshow that the proposed techniques outperformed the standard VNS tested on university course timetabling benchmark dataset ITC2007-Track3. Meanwhile, theapproach was tested using datasets collected from the faculty of information technology at Al-Ahlyyia Amman University (Jordan). Where the results showed that,the proposed technique could help educational institutes to resume their regularoperations while complying with the social distancing guidelines.展开更多
文摘Social distancing during COVID-19 has become one of the most important measures in reducing the risks of the spread of the virus. Implementing thesemeasures at universities is crucial and directly related to the physical attendance ofthe populations of students, professors, employees, and other members on campus. This research proposes an automated scheduling approach that can help universities and schools comply with the social distancing regulations by providingassistance in avoiding huge assemblages of people. Furthermore, this paper proposes a novel course timetable-scheduling scheme based on four main constraints.First, a distance of two meters must be maintained between each student inside theclassroom. Second, no classrooms should contain more than 20% of their regularcapacity. Third, there would be no back-to-back classes. Lastly, no lectures shouldbe held simultaneously in adjacent classrooms. The proposed approach wasimplemented using a variable neighborhood search (VNS) approach with an adaptive neighborhood structure (AD-NS) to resolve the problem of scheduling coursetimetables at Al-Ahlyyia Amman University. However, the experimental resultsshow that the proposed techniques outperformed the standard VNS tested on university course timetabling benchmark dataset ITC2007-Track3. Meanwhile, theapproach was tested using datasets collected from the faculty of information technology at Al-Ahlyyia Amman University (Jordan). Where the results showed that,the proposed technique could help educational institutes to resume their regularoperations while complying with the social distancing guidelines.