The capability of ADRC is studied for linear time-invariant SISO minimum-phase systems with unknown orders, uncertain relative degrees, and unknown input disturbances. It is proved that ADRC can reject the unknown inp...The capability of ADRC is studied for linear time-invariant SISO minimum-phase systems with unknown orders, uncertain relative degrees, and unknown input disturbances. It is proved that ADRC can reject the unknown input disturbance and guarantee the close-loop stability for the plants with unknown but bounded relative degrees. Meanwhile, some close-loop performances can be achieved. The influence of the sensor noise is also discussed. And it is demonstrated by numerical examples that one ADRC with fixed parameters can be applied to a group of plants of different orders, relative degrees, and parameters.展开更多
基金supported by Natural Science Foundation of China under Grant Nos.60821091 and 60736022
文摘The capability of ADRC is studied for linear time-invariant SISO minimum-phase systems with unknown orders, uncertain relative degrees, and unknown input disturbances. It is proved that ADRC can reject the unknown input disturbance and guarantee the close-loop stability for the plants with unknown but bounded relative degrees. Meanwhile, some close-loop performances can be achieved. The influence of the sensor noise is also discussed. And it is demonstrated by numerical examples that one ADRC with fixed parameters can be applied to a group of plants of different orders, relative degrees, and parameters.