In this contribution, robust fault detection problems for discrete time-delay systems with l2-norm bounded unknown inputs are studied. The basic idea of our study is first to introduce a state-memoryless observer-base...In this contribution, robust fault detection problems for discrete time-delay systems with l2-norm bounded unknown inputs are studied. The basic idea of our study is first to introduce a state-memoryless observer-based fault detection filter (FDF) as the residual generator and then to formulate such a FDF design problem as an Hen optimization problem in the sense of increasing the sensitivity of residual to the faults, while simultaneously enhancing the robustness of residual to unknown input as well as plant input. The main results consist of the formulation of such a residual generation optimization problem, solvability conditions and the derivation of an analytic solution. The residual evaluation problem is also considered, which includes the determination of residual evaluation function and threshold. A numerical example is used to demonstrate the proposed fault detection scheme.展开更多
This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. Fo...This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.展开更多
基金This project was supported by the Shandong Natural Science Foundation (Y2002G05 Y2001G01).
文摘In this contribution, robust fault detection problems for discrete time-delay systems with l2-norm bounded unknown inputs are studied. The basic idea of our study is first to introduce a state-memoryless observer-based fault detection filter (FDF) as the residual generator and then to formulate such a FDF design problem as an Hen optimization problem in the sense of increasing the sensitivity of residual to the faults, while simultaneously enhancing the robustness of residual to unknown input as well as plant input. The main results consist of the formulation of such a residual generation optimization problem, solvability conditions and the derivation of an analytic solution. The residual evaluation problem is also considered, which includes the determination of residual evaluation function and threshold. A numerical example is used to demonstrate the proposed fault detection scheme.
文摘This work introduces an observer structure and highlights its distinct advantages in fault detection and isolation. Its application to the issue of shorted turns detection in synchronous generators is demonstrated. For the theoretical foundation, the convergence and design of Luenberger-type observers for disturbed linear time-invariant (LTI) single-input single-output (SISO) systems are reviewed with a particular focus on input and output disturbances. As an additional result, a simple observer design for stationary output disturbances that avoids a system order extension, as in classical results, is proposed.