The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adapt...The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone.By introducing a dynamic signal to dominate the unmodele...This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone.By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input,the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness.Only one adaptive parameter is needed no matter how many unknown parameters there are.The system investigated is more general and there is no need to solve Linear matrix inequality (LMI).Moreover,with our method,some assumptions imposed on nonlinear terms and dead-zone input are relaxed.Finally,simulations illustrate the effectiveness of the proposed adaptive control scheme.展开更多
The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by...The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearit...This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design.展开更多
The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-...The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.展开更多
A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and...A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.展开更多
The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. Th...The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.展开更多
An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbance...An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.展开更多
The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by ...The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.展开更多
Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of th...Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results.展开更多
A discrete gain-varying unknown input observer (UIO) method is presented for actuator fault detection and isolation (FDI) problems in this paper. A novel residual scheme together with a moving horizon threshold is...A discrete gain-varying unknown input observer (UIO) method is presented for actuator fault detection and isolation (FDI) problems in this paper. A novel residual scheme together with a moving horizon threshold is proposed. This design methodology is applied to a nonlinear F16 system with polynomial aerodynamics coefficient expressions, where the coefficient expressions for the F16 system and UIOs may be slightly different. The simulation results illustrate that a satisfactory FDI performance can be achieved even when the F16 system is under the environment of model uncertainties, exogenous noise and measurement errors.展开更多
Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,whic...Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.展开更多
In this paper,a novel finite-time distributed identification method is introduced for nonlinear interconnected systems.A distributed concurrent learning-based discontinuous gradient descent update law is presented to ...In this paper,a novel finite-time distributed identification method is introduced for nonlinear interconnected systems.A distributed concurrent learning-based discontinuous gradient descent update law is presented to learn uncertain interconnected subsystems’dynamics.The concurrent learning approach continually minimizes the identification error for a batch of previously recorded data collected from each subsystem as well as its neighboring subsystems.The state information of neighboring interconnected subsystems is acquired through direct communication.The overall update laws for all subsystems form coupled continuous-time gradient flow dynamics for which finite-time Lyapunov stability analysis is performed.As a byproduct of this Lyapunov analysis,easy-to-check rank conditions on data stored in the distributed memories of subsystems are obtained,under which finite-time stability of the distributed identifier is guaranteed.These rank conditions replace the restrictive persistence of excitation(PE)conditions which are hard and even impossible to achieve and verify for interconnected subsystems.Finally,simulation results verify the effectiveness of the presented distributed method in comparison with the other methods.展开更多
This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs ...This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters.展开更多
基金This project was supported by the National Natural Science Foundation of China (60074013)the Foundation of New Era Talent Engineering of Yangzhou University.
文摘The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors axe adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金supported by National Natural Science Foundation of China (No. 60704009)
文摘This paper presents an up-to-date study on the observer-based control problem for nonlinear systems in the presence of unmodeled dynamics and actuator dead-zone.By introducing a dynamic signal to dominate the unmodeled dynamics and using an adaptive nonlinear damping to counter the effects of the nonlinearities and dead-zone input,the proposed observer and controller can ensure that the closed-loop system is asymptotically stable in the sense of uniform ultimate boundedness.Only one adaptive parameter is needed no matter how many unknown parameters there are.The system investigated is more general and there is no need to solve Linear matrix inequality (LMI).Moreover,with our method,some assumptions imposed on nonlinear terms and dead-zone input are relaxed.Finally,simulations illustrate the effectiveness of the proposed adaptive control scheme.
基金supported by the National Natural Science Foundation of China(61863034)
文摘The identification of nonlinear systems with multiple sampled rates is a difficult task.The motivation of our paper is to study the parameter estimation problem of Hammerstein systems with dead-zone characteristics by using the dual-rate sampled data.Firstly,the auxiliary model identification principle is used to estimate the unmeasurable variables,and the recursive estimation algorithm is proposed to identify the parameters of the static nonlinear model with the dead-zone function and the parameters of the dynamic linear system model.Then,the convergence of the proposed identification algorithm is analyzed by using the martingale convergence theorem.It is proved theoretically that the estimated parameters can converge to the real values under the condition of continuous excitation.Finally,the validity of the proposed algorithm is proved by the identification of the dual-rate sampled nonlinear systems.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
文摘This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints.The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics.The line of sight angle,line of sight angle rate,attack angle and pitch rate are involved in the integrated guidance and control system.The controller is designed with a backstepping method,in which a first order filter is employed to avoid the differential explosion.The full tuned radial basis function(RBF)neural network(NN)is used to approximate the system dynamics with robust item coping with the reconstruction errors,the exactitude model requirement is reduced in the controller design.In the last step of backstepping method design,the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function.The uniform ultimate boundedness stability of the control system is proved.The simulation results validate the effectiveness of the controller design.
基金Project supported by the National Natural Science Foundation of China (No. 60572055)the Natural Science Foundation of Guangxi Province (No. 0339068), China
文摘The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement be- tween the output of the proposed model and actual measured output.
文摘A robust delay compensator has been developed for a class of uncertain nonlinear systems with an unknown constant input delay.The control law consists of feedback terms based on the integral of past control values and a novel filtered tracking error,capable of compensating for input delays.Suitable Lyapunov-Krasovskii functionals are used to prove global uniformly ultimately bounded(GUUB)tracking,provided certain sufficient gain conditions,dependent on the bound of the delay,are satisfied.Simulation results illustrate the performance and robustness of the controller for different values of input delay.
基金Supported by the National Natural Science Foundation of China (40174003)
文摘The unknown parameter’s variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now, which didn’t appear in the internal and external referencing documents. The unknown parameter’s vari- ance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source, multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
基金Supported by National Natural Science Foundation of China(60374002,60674036)the Science and Technical Development Plan of Shandong Province (2004GG4204014)the Program for New Century Excellent Talents in University of China
基金This work was supported in part by the National Natural Science Foundation of China(61873151,62073201)in part by the Shandong Provincial Natural Science Foundation of China(ZR2019MF009)+2 种基金the Taishan Scholar Project of Shandong Province of China(tsqn201909078)the Major Scientific and Technological Innovation Project of Shandong Province,China(2019JAZZ020812)in part by the Major Program of Shandong Province Natural Science Foundation,China(ZR2018ZB0419).
文摘An adaptive decentralized asymptotic tracking control scheme is developed in this paper for a class of large-scale nonlinear systems with unknown strong interconnections,unknown time-varying parameters,and disturbances.First,by employing the intrinsic properties of Gaussian functions for the interconnection terms for the first time,all extra signals in the framework of decentralized control are filtered out,thereby removing all additional assumptions imposed on the interconnec-tions,such as upper bounding functions and matching conditions.Second,by introducing two integral bounded functions,asymptotic tracking control is realized.Moreover,the nonlinear filters with the compensation terms are introduced to circumvent the issue of“explosion of complexity”.It is shown that all the closed-loop signals are bounded and the tracking errors converge to zero asymptotically.In the end,a simulation example is carried out to demonstrate the effectiveness of the proposed approach.
文摘The adaptive stabilization problem of nonlinear systems are studied. For a class of uncertain nonlinear systems with unknown control direction, we proposed a robust adaptive backstepping scheme withσ-modification by introducing Nussbaum function and Backstep- ping methods, and proved that all the signals of the closed-loop systems are bounded.
文摘Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results.
文摘A discrete gain-varying unknown input observer (UIO) method is presented for actuator fault detection and isolation (FDI) problems in this paper. A novel residual scheme together with a moving horizon threshold is proposed. This design methodology is applied to a nonlinear F16 system with polynomial aerodynamics coefficient expressions, where the coefficient expressions for the F16 system and UIOs may be slightly different. The simulation results illustrate that a satisfactory FDI performance can be achieved even when the F16 system is under the environment of model uncertainties, exogenous noise and measurement errors.
基金Supported by the National Natural Science Foundation of China (21006127), the National Basic Research Program of China (2012CB720500) and the Science Foundation of China University of Petroleum, Beijing (KYJJ2012-05-28).
文摘Chemical processes are usually nonlinear singular systems.In this study,a soft sensor using nonlinear singular state observer is established for unknown inputs and uncertain model parameters in chemical processes,which are augmented as state variables.Based on the observability of the singular system,this paper presents a simplified observability criterion under certain conditions for unknown inputs and uncertain model parameters.When the observability is satisfied,the unknown inputs and the uncertain model parameters are estimated online by the soft sensor using augmented nonlinear singular state observer.The riser reactor of fluid catalytic cracking unit is used as an example for analysis and simulation.With the catalyst circulation rate as the only unknown input without model error,one temperature sensor at the riser reactor outlet will ensure the correct estimation for the catalyst circulation rate.However,when uncertain model parameters also exist,additional temperature sensors must be used to ensure correct estimation for unknown inputs and uncertain model parameters of chemical processes.
基金This work was partially supported by the European Union’s Horizon 2020 research and innovation programme(739551)(KIOS CoE)from the Republic of Cyprus through the Directorate General for European Programmes,Coordination and Development.
文摘In this paper,a novel finite-time distributed identification method is introduced for nonlinear interconnected systems.A distributed concurrent learning-based discontinuous gradient descent update law is presented to learn uncertain interconnected subsystems’dynamics.The concurrent learning approach continually minimizes the identification error for a batch of previously recorded data collected from each subsystem as well as its neighboring subsystems.The state information of neighboring interconnected subsystems is acquired through direct communication.The overall update laws for all subsystems form coupled continuous-time gradient flow dynamics for which finite-time Lyapunov stability analysis is performed.As a byproduct of this Lyapunov analysis,easy-to-check rank conditions on data stored in the distributed memories of subsystems are obtained,under which finite-time stability of the distributed identifier is guaranteed.These rank conditions replace the restrictive persistence of excitation(PE)conditions which are hard and even impossible to achieve and verify for interconnected subsystems.Finally,simulation results verify the effectiveness of the presented distributed method in comparison with the other methods.
基金This work was supported in part by National Natural Science Foundation of China under Grants 62103167 and 61833007in part by the Natural Science Foundation of Jiangsu Province under Grant BK20210451.
文摘This paper is focused on the state estimation problem for nonlinear systems with unknown statistics of measurement noise.Based on the cubature Kalman filter,we propose a new nonlinear filtering algorithm that employs a skew t distribution to characterize the asymmetry of the measurement noise.The system states and the statistics of skew t noise distribution,including the shape matrix,the scale matrix,and the degree of freedom(DOF)are estimated jointly by employing variational Bayesian(VB)inference.The proposed method is validated in a target tracking example.Results of the simulation indicate that the proposed nonlinear filter can perform satisfactorily in the presence of unknown statistics of measurement noise and outperform than the existing state-of-the-art nonlinear filters.
基金Supported by National Natural Science Foundations of China (61325016, 61273084, 61233014), Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), and the Independent Innovation Foundation of Shan- dong University (2012JC014)