The unmanned dual-arm aerial manipulator system is composed of a multirotor unmanned aerial vehicle(UAV)and two manipulators.Compared to a single manipulator,dual-arm always provides greater°exibility and versati...The unmanned dual-arm aerial manipulator system is composed of a multirotor unmanned aerial vehicle(UAV)and two manipulators.Compared to a single manipulator,dual-arm always provides greater°exibility and versatility in both goods delivery and complex task execution.However,the practical application of the system is limited due to nonlinearities and complex dynamic coupling behavior between the multirotor and the manipulator,as well as the one between the inner and outer loop of the multirotor.In this paper,a holistic model of the dual-arm aerial manipulator system is¯rst derived with complete model information.Subsequently,an adaptive sliding-mode disturbance observer(ASMDO)is proposed to handle external disturbances and unmeasurable disturbances caught by unmeasurable angular velocity and acceleration of the manipulators.Moreover,for safety concerns and transient performance requirements,the state constraints should be guaranteed.To this end,an auxiliary term composed of constrained variable signals is introduced.Then,the performance of the designed method is proven by rigorous analysis.Finally,the proposed method is validated through two sets of simulation tests.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62273187,and Grant 62233011in part by the Young Elite Scientists Sponsorship Program by Tianjin under Grant TJSQNTJ-2020-21in part by the Haihe Lab of ITAI under Grant 22HHXCJC00003.
文摘The unmanned dual-arm aerial manipulator system is composed of a multirotor unmanned aerial vehicle(UAV)and two manipulators.Compared to a single manipulator,dual-arm always provides greater°exibility and versatility in both goods delivery and complex task execution.However,the practical application of the system is limited due to nonlinearities and complex dynamic coupling behavior between the multirotor and the manipulator,as well as the one between the inner and outer loop of the multirotor.In this paper,a holistic model of the dual-arm aerial manipulator system is¯rst derived with complete model information.Subsequently,an adaptive sliding-mode disturbance observer(ASMDO)is proposed to handle external disturbances and unmeasurable disturbances caught by unmeasurable angular velocity and acceleration of the manipulators.Moreover,for safety concerns and transient performance requirements,the state constraints should be guaranteed.To this end,an auxiliary term composed of constrained variable signals is introduced.Then,the performance of the designed method is proven by rigorous analysis.Finally,the proposed method is validated through two sets of simulation tests.