Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a health...Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection.展开更多
The use of the Unmanned Aerial System (UAS) has attracted scientific attention because of its potential to generate high-throughput phenotyping data. The application of UAS to guar phenotyping remains limited. Guar is...The use of the Unmanned Aerial System (UAS) has attracted scientific attention because of its potential to generate high-throughput phenotyping data. The application of UAS to guar phenotyping remains limited. Guar is multi-purpose legume species. India and Pakistan are the world’s top guar producers. The U.S. is the world guar largest market with an import value of >$1 billion annually. The objective of this study was to test the feasibility of UAS phenotyping of plant height and canopy width in guar. The UAS data were collected from a field plot of 10 guar accessions on July 7, 2021, and September 27, 2021. The study was organized in a Randomized Complete Block Design (RCBD) with 3 blocks. A total of 23 Vegetation Indices (VIs) were computed. The analysis of variance showed significant genotypic effects on plant weight (p < 0.05) and canopy width (p on plant height (p most VIs were significant for both flights (p Vegetation Index (NDVI) and Red Edge Normalized Difference Vegetation Index (NDRE) were significantly and highly correlated with plant height (r = 0.74) and canopy width (r = 0.68). The results will be of interest in developing high throughput phenotyping approach for guar breeding.展开更多
In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is ...In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is also affected by the block length.Therefore,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving UAVs.This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission.In our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source UAV.Under the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length optimization.Then,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization problems.Finally,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems iteratively.The simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain.展开更多
The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimat...Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work.展开更多
Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unma...Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.展开更多
Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as ...Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.展开更多
In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system a...In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation.展开更多
Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-e...Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and rese...Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.展开更多
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ...In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.展开更多
BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly...BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.展开更多
Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becom...Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becomes essential to optimally utilize the resources and effective communication among them and base station(BS).Therefore,clustering can be employed as an effective way of accomplishing smart communication systems among multiple UAVs.In this aspect,this paper presents a group teaching optimization algorithm with deep learning enabled smart communication system(GTOADL-SCS)technique for UAV networks.The proposed GTOADL-SCS model encompasses a two stage process namely clustering and classification.At the initial stage,the GTOADL-SCS model includes a GTOA based clustering scheme to elect cluster heads(CHs)and organize clusters.Besides,the GTOADL-SCS model develops a fitness function containing three input parameters as residual energy of UAVs,average neighoring distance,and UAV degree.For classification process,the GTOADLSCS model applies pre-trained densely connected network(DenseNet201)feature extractor with gated recurrent unit(GRU)classifier.For ensuring the enhanced performance of the GTOADL-SCS model,a widespread simulation analysis is performed and the comparative study reported the significant outcomes over the existing approaches with maximum packet delivery ratio(PDR)of 92.60%.展开更多
Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent...Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.展开更多
Aerial spraying can support efficient defoliation without crop contact.With the recent introduction to unmanned aerial system(UAS)for aerial spraying in China,there is a need to determine the optimum application varia...Aerial spraying can support efficient defoliation without crop contact.With the recent introduction to unmanned aerial system(UAS)for aerial spraying in China,there is a need to determine the optimum application variables to achieve high efficacy and efficiency with low costs.The present research involved field studies across two annual cotton production seasons in North Xinjiang,China.Four factors,including volume rate(A),tank mix including spray adjuvants(B),flight altitude(C),flight speed(D)and three levels of L9(3^(4))orthogonal arrays were carried out to optimize the application parameters for three types of UASs.These included different numbers of rotors as follows:four-rotors,six-rotors and eight-rotors.Spray coverage,distribution uniformity(coefficient of variation(CV)of droplet coverage),rates of cotton defoliation and boll opening,application efficiency and cost were measured and assessed.Results showed that:(1)the rates of defoliation and boll opening by aerial cotton defoliant application could meet the requirement of cotton mechanized harvesting;(2)the optimal scenario for the three UASs was A_(3)B_(2)C_(1)D_(3),Volume rate(A3):48 L/hm^(2);Tank mix and concentration(B_(2)):(Tuotulong 225+Sujie 750+Ethephon 2250)mL/hm^(2),Flight altitude(C_(1)):1.5 m,and Flight speeds(D_(3))for unmanned helicopters with four-rotors,six-rotors and eight-rotors were 3.12 m/s,2.51 m/s and 3.76 m/s,respectively.These results can provide guidance for cotton defoliant aerial spraying in China using UAS.展开更多
Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID con...Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID controller is to achieve the position control and velocity control simultaneously.Design/methodology/approach–The dynamic of the UASs is mathematically modeled.One PID controller is used for position tracking control,while the other is selected for the vertical component of velocity tracking control.Meanwhile,fuzzy logic algorithm is presented to use the actual horizontal component of velocity to compute the desired position.Findings–Based on this fuzzy logic algorithm,the control error of the horizontal component of velocity tracking control is narrowed gradually to be zero.The results show that the fuzzy logic algorithm can make the UASs hover still in the air and vertical to the ground.Social implications–The acquired results are based on simulation not experiment.Originality/value–This is the first study to use two independent PID controllers to realize stable hovering control for UAS.It is also the first to use the velocity of the UAS to calculate the desired position.展开更多
Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead t...Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security.展开更多
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ...This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.展开更多
文摘Peanut (Arachis hypogaea L.) is a highly nutritious food that is an excellent source of protein and is associated with increased coronary health, lower risk of type-2 diabetes, lower risk of breast cancer and a healthy profile of inflammatory biomarkers. The domestic demand for organic peanuts has significantly increased, requiring new breeding efforts to develop peanut varieties adapted to the organic farming system. The use of unmanned aerial system (UAS) has gained scientific attention because of the ability to generate high-throughput phenotypic data. However, it has not been fully investigated for phenotyping agronomic traits of organic peanuts. Peanuts are beneficial for cardio system protection and are widely used. Within the U.S., peanuts are grown in 11 states on roughly 600,000 hectares and averaging 4500 kg/ha. This study’s objective was to test the accuracy of UAS data in the phenotyping pod and seed yield of organic peanuts. UAS data was collected from a field plot with 20 Spanish peanut breeding lines on July 07, 2021 and September 27, 2021. The study was a randomized complete block design (RCBD) with 3 blocks. Twenty-five vegetation indices (VIs) were calculated. The analysis of variance showed significant genotypic effects on all 25 vegetation indices for both flights (p < 0.05). The vegetation index Red edge (RE) from the first flight was the most significantly correlated with both pod (r = 0.44) and seed yield (r = 0.64). These results can be used to further advance organic peanut breeding efforts with high-throughput data collection.
文摘The use of the Unmanned Aerial System (UAS) has attracted scientific attention because of its potential to generate high-throughput phenotyping data. The application of UAS to guar phenotyping remains limited. Guar is multi-purpose legume species. India and Pakistan are the world’s top guar producers. The U.S. is the world guar largest market with an import value of >$1 billion annually. The objective of this study was to test the feasibility of UAS phenotyping of plant height and canopy width in guar. The UAS data were collected from a field plot of 10 guar accessions on July 7, 2021, and September 27, 2021. The study was organized in a Randomized Complete Block Design (RCBD) with 3 blocks. A total of 23 Vegetation Indices (VIs) were computed. The analysis of variance showed significant genotypic effects on plant weight (p < 0.05) and canopy width (p on plant height (p most VIs were significant for both flights (p Vegetation Index (NDVI) and Red Edge Normalized Difference Vegetation Index (NDRE) were significantly and highly correlated with plant height (r = 0.74) and canopy width (r = 0.68). The results will be of interest in developing high throughput phenotyping approach for guar breeding.
基金supported in part by the National Key R&D Program of China under Grant 2022YFB3104503in part by the China Postdoctoral Science Foundation under Grant 2024M750199+1 种基金in part by the National Natural Science Foundation of China under Grants 62202054,62002022 and 62472251in part by the Fundamental Research Funds for the Central Universities under Grant BLX202360.
文摘In blockchain-based unmanned aerial vehicle(UAV)communication systems,the length of a block affects the performance of the blockchain.The transmission performance of blocks in the form of finite character segments is also affected by the block length.Therefore,it is crucial to balance the transmission performance and blockchain performance of blockchain communication systems,especially in wireless environments involving UAVs.This paper investigates a secure transmission scheme for blocks in blockchain-based UAV communication systems to prevent the information contained in blocks from being completely eavesdropped during transmission.In our scheme,using a friendly jamming UAV to emit jamming signals diminishes the quality of the eavesdropping channel,thus enhancing the communication security performance of the source UAV.Under the constraints of maneuverability and transmission power of the UAV,the joint design of UAV trajectories,transmission power,and block length are proposed to maximize the average minimum secrecy rate(AMSR).Since the optimization problem is non-convex and difficult to solve directly,we first decompose the optimization problem into subproblems of trajectory optimization,transmission power optimization,and block length optimization.Then,based on firstorder approximation techniques,these subproblems are reformulated as convex optimization problems.Finally,we utilize an alternating iteration algorithm based on the successive convex approximation(SCA)technique to solve these subproblems iteratively.The simulation results demonstrate that our proposed scheme can achieve secure transmission for blocks while maintaining the performance of the blockchain.
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFD2300700)the Open Project Program of the State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute (Grant No.2023ZZKT20402)+1 种基金the Agricultural Science and Technology Innovation Program, the Central Public-Interest Scientific Institution Basal Research Fund, China (Grant No.CPSIBRF-CNRRI-202119)the Zhejiang ‘Ten Thousand Talents’ Plan Science and Technology Innovation Leading Talent Project, China (Grant No.2020R52035)。
文摘Efficient and high-quality estimation of key phenological dates in rice is of great significance in breeding work. Plant height(PH) dynamics are valuable for estimating phenological dates. However, research on estimating the key phenological dates of multiple rice accessions based on PH dynamics has been limited. In 2022, field traits were collected using unmanned aerial vehicle(UAV)-based images across 435 plots, including 364 rice varieties. PH, dates of initial heading(IH) and full heading(FH), and panicle initiation(PI), and growth period after transplanting(GPAT) were collected during the rice growth stage. PHs were extracted using a digital surface model(DSM) and fitted using Fourier and logistic models. Machine learning algorithms, including multiple linear regression, random forest(RF), support vector regression, least absolute shrinkage and selection operator, and elastic net regression, were employed to estimate phenological dates. Results indicated that the optimal percentile of the DSM for extracting rice PH was the 95th(R^(2) = 0.934, RMSE = 0.056 m). The Fourier model provided a better fit for PH dynamics compared with the logistic models. Additionally, curve features(CF) and GPAT were significantly associated with PI, IH, and FH. The combination of CF and GPAT outperformed the use of CF alone, with RF demonstrating the best performance among the algorithms. Specifically, the combination of CF extracted from the logistic models, GPAT, and RF yielded the best performance for estimating PI(R^(2) = 0.834, RMSE = 4.344 d), IH(R^(2) = 0.877, RMSE = 2.721 d), and FH(R^(2) = 0.883, RMSE = 2.694 d). Overall, UAV-based rice PH dynamics combined with machine learning effectively estimated the key phenological dates of multiple rice accessions, providing a novel approach for investigating key phenological dates in breeding work.
文摘Recently,there has been a notable surge of interest in scientific research regarding spectral images.The potential of these images to revolutionize the digital photography industry,like aerial photography through Unmanned Aerial Vehicles(UAVs),has captured considerable attention.One encouraging aspect is their combination with machine learning and deep learning algorithms,which have demonstrated remarkable outcomes in image classification.As a result of this powerful amalgamation,the adoption of spectral images has experienced exponential growth across various domains,with agriculture being one of the prominent beneficiaries.This paper presents an extensive survey encompassing multispectral and hyperspectral images,focusing on their applications for classification challenges in diverse agricultural areas,including plants,grains,fruits,and vegetables.By meticulously examining primary studies,we delve into the specific agricultural domains where multispectral and hyperspectral images have found practical use.Additionally,our attention is directed towards utilizing machine learning techniques for effectively classifying hyperspectral images within the agricultural context.The findings of our investigation reveal that deep learning and support vector machines have emerged as widely employed methods for hyperspectral image classification in agriculture.Nevertheless,we also shed light on the various issues and limitations of working with spectral images.This comprehensive analysis aims to provide valuable insights into the current state of spectral imaging in agriculture and its potential for future advancements.
基金supported by the National Natural Science Foundation of China(72201229,72025103,72394360,72394362,72361137001,72071173,and 71831008).
文摘Technological advancements in unmanned aerial vehicles(UAVs)have revolutionized various industries,enabling the widespread adoption of UAV-based solutions.In engineering management,UAV-based inspection has emerged as a highly efficient method for identifying hidden risks in high-risk construction environments,surpassing traditional inspection techniques.Building on this foundation,this paper delves into the optimization of UAV inspection routing and scheduling,addressing the complexity introduced by factors such as no-fly zones,monitoring-interval time windows,and multiple monitoring rounds.To tackle this challenging problem,we propose a mixed-integer linear programming(MILP)model that optimizes inspection task assignments,monitoring sequence schedules,and charging decisions.The comprehensive consideration of these factors differentiates our problem from conventional vehicle routing problem(VRP),leading to a mathematically intractable model for commercial solvers in the case of large-scale instances.To overcome this limitation,we design a tailored variable neighborhood search(VNS)metaheuristic,customizing the algorithm to efficiently solve our model.Extensive numerical experiments are conducted to validate the efficacy of our proposed algorithm,demonstrating its scalability for both large-scale and real-scale instances.Sensitivity experiments and a case study based on an actual engineering project are also conducted,providing valuable insights for engineering managers to enhance inspection work efficiency.
基金supported in part by the National Science Foundation of China(62173183)。
文摘In this paper,guaranteed cost attitude tracking con-trol for uncertain quadrotor unmanned aerial vehicle(QUAV)under safety constraints is studied.First,an augmented system is constructed by the tracking error system and reference system.This transformation aims to convert the tracking control prob-lem into a stabilization control problem.Then,control barrier function and disturbance attenuation function are designed to characterize the violations of safety constraints and tolerance of uncertain disturbances,and they are incorporated into the reward function as penalty items.Based on the modified reward function,the problem is simplified as the optimal regulation problem of the nominal augmented system,and a new Hamilton-Jacobi-Bellman equation is developed.Finally,critic-only rein-forcement learning algorithm with a concurrent learning tech-nique is employed to solve the Hamilton-Jacobi-Bellman equa-tion and obtain the optimal controller.The proposed algorithm can not only ensure the reward function within an upper bound in the presence of uncertain disturbances,but also enforce safety constraints.The performance of the algorithm is evaluated by the numerical simulation.
基金the National Natural Science Foundation of China under Grants 62001517 and 61971474the Beijing Nova Program under Grant Z201100006820121.
文摘Integrated satellite unmanned aerial vehicle relay networks(ISUAVRNs)have become a prominent topic in recent years.This paper investigates the average secrecy capacity(ASC)for reconfigurable intelligent surface(RIS)-enabled ISUAVRNs.Especially,an eve is considered to intercept the legitimate information from the considered secrecy system.Besides,we get detailed expressions for the ASC of the regarded secrecy system with the aid of the reconfigurable intelligent.Furthermore,to gain insightful results of the major parameters on the ASC in high signalto-noise ratio regime,the approximate investigations are further gotten,which give an efficient method to value the secrecy analysis.At last,some representative computer results are obtained to prove the theoretical findings.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金supported in part by National Key Research&Devel-opment Program of China(2021YFB2900801)in part by Guangdong Basic and Applied Basic Research Foundation(2022A1515110335)in party by Fundamental Research Funds for the Central Universities(FRF-TP-22-094A1).
文摘Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.
基金the National Key R&D Program of China(2022YFF0604502).
文摘In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.
基金Sanming Project of Medicine in Shenzhen(No.SZSM201911007)Shenzhen Stability Support Plan(20200824145152001)。
文摘BACKGROUND:Rapid on-site triage is critical after mass-casualty incidents(MCIs)and other mass injury events.Unmanned aerial vehicles(UAVs)have been used in MCIs to search and rescue wounded individuals,but they mainly depend on the UAV operator’s experience.We used UAVs and artificial intelligence(AI)to provide a new technique for the triage of MCIs and more efficient solutions for emergency rescue.METHODS:This was a preliminary experimental study.We developed an intelligent triage system based on two AI algorithms,namely OpenPose and YOLO.Volunteers were recruited to simulate the MCI scene and triage,combined with UAV and Fifth Generation(5G)Mobile Communication Technology real-time transmission technique,to achieve triage in the simulated MCI scene.RESULTS:Seven postures were designed and recognized to achieve brief but meaningful triage in MCIs.Eight volunteers participated in the MCI simulation scenario.The results of simulation scenarios showed that the proposed method was feasible in tasks of triage for MCIs.CONCLUSION:The proposed technique may provide an alternative technique for the triage of MCIs and is an innovative method in emergency rescue.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R238)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR13.
文摘Recently,unmanned aerial vehicles(UAV)or drones are widely employed for several application areas such as surveillance,disaster management,etc.Since UAVs are limited to energy,efficient coordination between them becomes essential to optimally utilize the resources and effective communication among them and base station(BS).Therefore,clustering can be employed as an effective way of accomplishing smart communication systems among multiple UAVs.In this aspect,this paper presents a group teaching optimization algorithm with deep learning enabled smart communication system(GTOADL-SCS)technique for UAV networks.The proposed GTOADL-SCS model encompasses a two stage process namely clustering and classification.At the initial stage,the GTOADL-SCS model includes a GTOA based clustering scheme to elect cluster heads(CHs)and organize clusters.Besides,the GTOADL-SCS model develops a fitness function containing three input parameters as residual energy of UAVs,average neighoring distance,and UAV degree.For classification process,the GTOADLSCS model applies pre-trained densely connected network(DenseNet201)feature extractor with gated recurrent unit(GRU)classifier.For ensuring the enhanced performance of the GTOADL-SCS model,a widespread simulation analysis is performed and the comparative study reported the significant outcomes over the existing approaches with maximum packet delivery ratio(PDR)of 92.60%.
基金the Office of Naval Research for supporting this effort through the Consortium for Robotics and Unmanned Systems Education and Research。
文摘Unexploded ordnance(UXO)poses a threat to soldiers operating in mission areas,but current UXO detection systems do not necessarily provide the required safety and efficiency to protect soldiers from this hazard.Recent technological advancements in artificial intelligence(AI)and small unmanned aerial systems(sUAS)present an opportunity to explore a novel concept for UXO detection.The new UXO detection system proposed in this study takes advantage of employing an AI-trained multi-spectral(MS)sensor on sUAS.This paper explores feasibility of AI-based UXO detection using sUAS equipped with a single(visible)spectrum(SS)or MS digital electro-optical(EO)sensor.Specifically,it describes the design of the Deep Learning Convolutional Neural Network for UXO detection,the development of an AI-based algorithm for reliable UXO detection,and also provides a comparison of performance of the proposed system based on SS and MS sensor imagery.
基金The authors acknowledge that this work was financially supported by the Science and Technology Plan of Guangdong Province of China(Project No.2017B090907031,2017B090903007,2015B020206003)Innovative Research Team of Guangdong Province Agriculture Research System(2017LM2153).
文摘Aerial spraying can support efficient defoliation without crop contact.With the recent introduction to unmanned aerial system(UAS)for aerial spraying in China,there is a need to determine the optimum application variables to achieve high efficacy and efficiency with low costs.The present research involved field studies across two annual cotton production seasons in North Xinjiang,China.Four factors,including volume rate(A),tank mix including spray adjuvants(B),flight altitude(C),flight speed(D)and three levels of L9(3^(4))orthogonal arrays were carried out to optimize the application parameters for three types of UASs.These included different numbers of rotors as follows:four-rotors,six-rotors and eight-rotors.Spray coverage,distribution uniformity(coefficient of variation(CV)of droplet coverage),rates of cotton defoliation and boll opening,application efficiency and cost were measured and assessed.Results showed that:(1)the rates of defoliation and boll opening by aerial cotton defoliant application could meet the requirement of cotton mechanized harvesting;(2)the optimal scenario for the three UASs was A_(3)B_(2)C_(1)D_(3),Volume rate(A3):48 L/hm^(2);Tank mix and concentration(B_(2)):(Tuotulong 225+Sujie 750+Ethephon 2250)mL/hm^(2),Flight altitude(C_(1)):1.5 m,and Flight speeds(D_(3))for unmanned helicopters with four-rotors,six-rotors and eight-rotors were 3.12 m/s,2.51 m/s and 3.76 m/s,respectively.These results can provide guidance for cotton defoliant aerial spraying in China using UAS.
文摘Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID controller is to achieve the position control and velocity control simultaneously.Design/methodology/approach–The dynamic of the UASs is mathematically modeled.One PID controller is used for position tracking control,while the other is selected for the vertical component of velocity tracking control.Meanwhile,fuzzy logic algorithm is presented to use the actual horizontal component of velocity to compute the desired position.Findings–Based on this fuzzy logic algorithm,the control error of the horizontal component of velocity tracking control is narrowed gradually to be zero.The results show that the fuzzy logic algorithm can make the UASs hover still in the air and vertical to the ground.Social implications–The acquired results are based on simulation not experiment.Originality/value–This is the first study to use two independent PID controllers to realize stable hovering control for UAS.It is also the first to use the velocity of the UAS to calculate the desired position.
基金supported by the Key Research and Development Program of Heilongjiang,China(Grant No.2022ZX01A25)Cooperative Funding between Huazhong Agricultural University and Shenzhen Institute of Agricultural Genomics(Grant No.SZYJY2022014)+2 种基金Fundamental Research Funds for the Central Universities,Beijing,China(Grant Nos.2662022JC006 and 2662022ZHYJ002)National Natural Science Foundation of China(Grant No.32101819)Huazhong Agriculture University Research Startup Fund,China(Grant Nos.11041810340 and 11041810341).
文摘Pre-harvest yield prediction of ratoon rice is critical for guiding crop interventions in precision agriculture.However,the unique agronomic practice(i.e.,varied stubble height treatment)in rice ratooning could lead to inconsistent rice phenology,which had a significant impact on yield prediction of ratoon rice.Multi-temporal unmanned aerial vehicle(UAV)-based remote sensing can likely monitor ratoon rice productivity and reflect maximum yield potential across growing seasons for improving the yield prediction compared with previous methods.Thus,in this study,we explored the performance of combination of agronomic practice information(API)and single-phase,multi-spectral features[vegetation indices(VIs)and texture(Tex)features]in predicting ratoon rice yield,and developed a new UAV-based method to retrieve yield formation process by using multi-temporal features which were effective in improving yield forecasting accuracy of ratoon rice.The results showed that the integrated use of VIs,Tex and API(VIs&Tex+API)improved the accuracy of yield prediction than single-phase UAV imagery-based feature,with the panicle initiation stage being the best period for yield prediction(R^(2) as 0.732,RMSE as 0.406,RRMSE as 0.101).More importantly,compared with previous multi-temporal UAV-based methods,our proposed multi-temporal method(multi-temporal model VIs&Tex:R^(2) as 0.795,RMSE as 0.298,RRMSE as 0.072)can increase R^(2) by 0.020-0.111 and decrease RMSE by 0.020-0.080 in crop yield forecasting.This study provides an effective method for accurate pre-harvest yield prediction of ratoon rice in precision agriculture,which is of great significance to take timely means for ensuring ratoon rice production and food security.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the Project Number (IF-PSAU-2021/01/18707).
文摘This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.