The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer...The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.展开更多
Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibilit...Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.展开更多
Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especiall...Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment.展开更多
Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this st...Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.展开更多
目的 :为解决目前无人机可见光系统检测小目标时准确率和实时性低的问题,提出一种基于改进YOLOv8的可见光小目标检测方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv8网络作为基础框架构建AGC-YOLO模...目的 :为解决目前无人机可见光系统检测小目标时准确率和实时性低的问题,提出一种基于改进YOLOv8的可见光小目标检测方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv8网络作为基础框架构建AGC-YOLO模型。首先,在Backbone部分融入卷积注意力模块(convolutional block attention module,CBAM),提高模型的特征表达能力;其次,将部分传统卷积模块替换为可改变核卷积模块AKconv,减少网络参数量;最后,在Neck部分采用Gold-YOLO模块,提高对不同尺寸目标的检测能力。选用VisDrone2019数据集分别进行消融实验和对比实验,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPs)和参数量(parameters)评估AGC-YOLO模型对小目标检测的效果。结果:AGC-YOLO模型的FPS为31.90,GFLOPs和Parameters分别为9.20和11.30 M,达到无人机实时性的检测速度要求(FPS不低于30)。虽然AGC-YOLO模型的GFLOPs和Parameters比轻量化模型YOLOv8n、Ghost-YOLO和YOLO-BiFPN有所增加,但是mAP50(mAP50表示在交并比为0.5时的mAP)分别提高了15%、6%和5%。结论:提出的方法在提高检测速度、减少参数量、保障检测精度方面表现良好,在无人机可见光小目标检测方面具有良好的应用前景。展开更多
In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion ...In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.展开更多
Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,du...Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,due to the large size of UAV images,flight distance,and height changes,the object scale changes dramatically.At the same time,the elements of interest in railway bridges,such as bolts and corrosion,are small and dense objects,and the sample data set is seriously unbalanced,posing great challenges to the accurate detection of defects.In this paper,an adaptive cropping shallow attention network(ACSANet)is proposed,which includes an adaptive cropping strategy for large UAV images and a shallow attention network for small object detection in limited samples.To enhance the accuracy and generalization of the model,the shallow attention network model integrates a coordinate attention(CA)mechanism module and an alpha intersection over union(α-IOU)loss function,and then carries out defect detection on the bolts,steel surfaces,and railings of railway bridges.The test results show that the ACSANet model outperforms the YOLOv5s model using adaptive cropping strategy in terms of the total mAP(an evaluation index)and missing bolt mAP by 5%and 30%,respectively.Also,compared with the YOLOv5s model that adopts the common cropping strategy,the total mAP and missing bolt mAP are improved by 10%and 60%,respectively.Compared with the YOLOv5s model without any cropping strategy,the total mAP and missing bolt mAP are improved by 40%and 67%,respectively.展开更多
Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for mode...Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.展开更多
Images captured in rainy days suffer from noticeable degradation of scene visibility.Unmanned aerial vehicles(UAVs),as important outdoor image acquisition systems,demand a proper rain removal algorithm to improve visu...Images captured in rainy days suffer from noticeable degradation of scene visibility.Unmanned aerial vehicles(UAVs),as important outdoor image acquisition systems,demand a proper rain removal algorithm to improve visual perception quality of captured images as well as the performance of many subsequent computer vision applications.To deal with rain streaks of different sizes and directions,this paper proposes to employ convolutional kernels of different sizes in a multi-path structure.Split attention is leveraged to enable communication across multiscale paths at feature level,which allows adaptive receptive field to tackle complex situations.We incorporate the multi-path convolution and the split attention operation into the basic residual block without increasing the channels of feature maps.Moreover,every block in our network is unfolded four times to compress the network volume without sacrificing the deraining performance.The performance on various benchmark datasets demonstrates that our method outperforms state-of-the-art deraining algorithms in both numerical and qualitative comparisons.展开更多
Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terro...Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terrorist threat. Use of Earth remote sensing (ERS), permitting to obtain information from large areas with a sufficiently high resolution, can provide significant assistance in solving the mentioned problems. This paper discusses the possibility of using various means of remote sensing such as satellites and unmanned aerial vehicles (UAV), also known as drones, for receiving information in different ranges of the electromagnetic spectrum. The paper states that joint using of both these means gives new possibilities in improving railroad security.展开更多
基金supported by Joint Fund of Natural Science Foundation of Zhejiang-Qingshanhu Science and Technology City(Grant No.LQY18C160002)National Natural Science Foundation of China(Grant No.U1809208)+1 种基金Zhejiang Science and Technology Key R&D Program Funded Project(Grant No.2018C02013)Natural Science Foundation of Zhejiang Province(Grant No.LQ20F020005).
文摘The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.
基金supported by a grant from the Basic Science Research Program through the National Research Foundation(NRF)(2021R1F1A1063634)funded by the Ministry of Science and ICT(MSIT),Republic of KoreaThe authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/13/40)+2 种基金Also,the authors are thankful to Prince Satam bin Abdulaziz University for supporting this study via funding from Prince Satam bin Abdulaziz University project number(PSAU/2024/R/1445)This work was also supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R54)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road traffic monitoring is an imperative topic widely discussed among researchers.Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides.However,aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area.To this end,different models have shown the ability to recognize and track vehicles.However,these methods are not mature enough to produce accurate results in complex road scenes.Therefore,this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts.The extracted frames were converted to grayscale,followed by the application of a georeferencing algorithm to embed coordinate information into the images.The masking technique eliminated irrelevant data and reduced the computational cost of the overall monitoring system.Next,Sobel edge detection combined with Canny edge detection and Hough line transform has been applied for noise reduction.After preprocessing,the blob detection algorithm helped detect the vehicles.Vehicles of varying sizes have been detected by implementing a dynamic thresholding scheme.Detection was done on the first image of every burst.Then,to track vehicles,the model of each vehicle was made to find its matches in the succeeding images using the template matching algorithm.To further improve the tracking accuracy by incorporating motion information,Scale Invariant Feature Transform(SIFT)features have been used to find the best possible match among multiple matches.An accuracy rate of 87%for detection and 80%accuracy for tracking in the A1 Motorway Netherland dataset has been achieved.For the Vehicle Aerial Imaging from Drone(VAID)dataset,an accuracy rate of 86%for detection and 78%accuracy for tracking has been achieved.
文摘Unmanned Aerial Vehicles(UAV)tilt photogrammetry technology can quickly acquire image data in a short time.This technology has been widely used in all walks of life with the rapid development in recent years especially in the rapid acquisition of high-resolution remote sensing images,because of its advantages of high efficiency,reliability,low cost and high precision.Fully using the UAV tilt photogrammetry technology,the construction image progress can be observed by stages,and the construction site can be reasonably and optimally arranged through three-dimensional modeling to create a civilized,safe and tidy construction environment.
基金supported by the National Natural Science Foundation of China(Nos.52225402 and U1910206).
文摘Heat transfer and temperature evolution in overburden fracture and ground fissures are one of the essential topics for the identification of ground fissures via unmanned aerial vehicle(UAV) infrared imager. In this study, discrete element software UDEC was employed to investigate the overburden fracture field under different mining conditions. Multiphysics software COMSOL were employed to investigate heat transfer and temperature evolution of overburden fracture and ground fissures under the influence of mining condition, fissure depth, fissure width, and month alternation. The UAV infrared field measurements also provided a calibration for numerical simulation. The results showed that for ground fissures connected to underground goaf(Fissure Ⅰ), the temperature difference increased with larger mining height and shallow buried depth. In addition, Fissure Ⅰ located in the boundary of the goaf have a greater temperature difference and is easier to be identified than fissures located above the mining goaf. For ground fissures having no connection to underground goaf(Fissure Ⅱ), the heat transfer is affected by the internal resistance of the overlying strata fracture when the depth of Fissure Ⅱ is greater than10 m, the temperature of Fissure Ⅱ gradually equals to the ground temperature as the fissures’ depth increases, and the fissures are difficult to be identified. The identification effect is most obvious for fissures larger than 16 cm under the same depth. In spring and summer, UAV infrared identification of mining fissures should be carried out during nighttime. This study provides the basis for the optimal time and season for the UAV infrared identification of different types of mining ground fissures.
文摘目的 :为解决目前无人机可见光系统检测小目标时准确率和实时性低的问题,提出一种基于改进YOLOv8的可见光小目标检测方法。方法:选取由主干网络(Backbone)、颈部模块(Neck)和头部模块(Head)组成的YOLOv8网络作为基础框架构建AGC-YOLO模型。首先,在Backbone部分融入卷积注意力模块(convolutional block attention module,CBAM),提高模型的特征表达能力;其次,将部分传统卷积模块替换为可改变核卷积模块AKconv,减少网络参数量;最后,在Neck部分采用Gold-YOLO模块,提高对不同尺寸目标的检测能力。选用VisDrone2019数据集分别进行消融实验和对比实验,通过平均精度均值(mean average precision,mAP)、每秒传输帧数(frames per second,FPS)、每秒10亿次的浮点运算数(giga floating-point operations per second,GFLOPs)和参数量(parameters)评估AGC-YOLO模型对小目标检测的效果。结果:AGC-YOLO模型的FPS为31.90,GFLOPs和Parameters分别为9.20和11.30 M,达到无人机实时性的检测速度要求(FPS不低于30)。虽然AGC-YOLO模型的GFLOPs和Parameters比轻量化模型YOLOv8n、Ghost-YOLO和YOLO-BiFPN有所增加,但是mAP50(mAP50表示在交并比为0.5时的mAP)分别提高了15%、6%和5%。结论:提出的方法在提高检测速度、减少参数量、保障检测精度方面表现良好,在无人机可见光小目标检测方面具有良好的应用前景。
基金the National Natural Science Foundation of China (No.61627810)the National Science and Technology Major Program of China (No.2018YFB1305003)the National Defense Science and Technology Outstanding Youth Science Foundation (No.2017-JCJQ-ZQ-031)。
文摘In order to solve the problem of small object size and low detection accuracy under the unmanned aerial vehicle(UAV)platform,the object detection algorithm based on deep aggregation network and high-resolution fusion module is studied.Furthermore,a joint network of object detection and feature extraction is studied to construct a real-time multi-object tracking algorithm.For the problem of object association failure caused by UAV movement,image registration is applied to multi-object tracking and a camera motion discrimination model is proposed to improve the speed of the multi-object tracking algorithm.The simulation results show that the algorithm proposed in this study can improve the accuracy of multi-object tracking under the UAV platform,and effectively solve the problem of association failure caused by UAV movement.
基金supported by the National Natural Science Foundation of China(No.61833002).
文摘Bridges are an important part of railway infrastructure and need regular inspection and maintenance.Using unmanned aerial vehicle(UAV)technology to inspect railway infrastructure is an active research issue.However,due to the large size of UAV images,flight distance,and height changes,the object scale changes dramatically.At the same time,the elements of interest in railway bridges,such as bolts and corrosion,are small and dense objects,and the sample data set is seriously unbalanced,posing great challenges to the accurate detection of defects.In this paper,an adaptive cropping shallow attention network(ACSANet)is proposed,which includes an adaptive cropping strategy for large UAV images and a shallow attention network for small object detection in limited samples.To enhance the accuracy and generalization of the model,the shallow attention network model integrates a coordinate attention(CA)mechanism module and an alpha intersection over union(α-IOU)loss function,and then carries out defect detection on the bolts,steel surfaces,and railings of railway bridges.The test results show that the ACSANet model outperforms the YOLOv5s model using adaptive cropping strategy in terms of the total mAP(an evaluation index)and missing bolt mAP by 5%and 30%,respectively.Also,compared with the YOLOv5s model that adopts the common cropping strategy,the total mAP and missing bolt mAP are improved by 10%and 60%,respectively.Compared with the YOLOv5s model without any cropping strategy,the total mAP and missing bolt mAP are improved by 40%and 67%,respectively.
基金supported in part by the Science and Technology Innovation 2030-Key Project of“New Generation Artificial Intelligence”(2018AAA0102303)the Young Elite Scientists Sponsorship Program of China Association of Science and Technology(YESS20210289)+1 种基金the China Postdoctoral Science Foundation(2020TQ1057,2020M682823)the National Natural Science Foundation of China(U20B2071,U1913602,91948204)。
文摘Change detection(CD)is becoming indispensable for unmanned aerial vehicles(UAVs),especially in the domain of water landing,rescue and search.However,even the most advanced models require large amounts of data for model training and testing.Therefore,sufficient labeled images with different imaging conditions are needed.Inspired by computer graphics,we present a cloning method to simulate inland-water scene and collect an auto-labeled simulated dataset.The simulated dataset consists of six challenges to test the effects of dynamic background,weather,and noise on change detection models.Then,we propose an image translation framework that translates simulated images to synthetic images.This framework uses shared parameters(encoder and generator)and 22×22 receptive fields(discriminator)to generate realistic synthetic images as model training sets.The experimental results indicate that:1)different imaging challenges affect the performance of change detection models;2)compared with simulated images,synthetic images can effectively improve the accuracy of supervised models.
基金the Fundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20191601).
文摘Images captured in rainy days suffer from noticeable degradation of scene visibility.Unmanned aerial vehicles(UAVs),as important outdoor image acquisition systems,demand a proper rain removal algorithm to improve visual perception quality of captured images as well as the performance of many subsequent computer vision applications.To deal with rain streaks of different sizes and directions,this paper proposes to employ convolutional kernels of different sizes in a multi-path structure.Split attention is leveraged to enable communication across multiscale paths at feature level,which allows adaptive receptive field to tackle complex situations.We incorporate the multi-path convolution and the split attention operation into the basic residual block without increasing the channels of feature maps.Moreover,every block in our network is unfolded four times to compress the network volume without sacrificing the deraining performance.The performance on various benchmark datasets demonstrates that our method outperforms state-of-the-art deraining algorithms in both numerical and qualitative comparisons.
文摘Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terrorist threat. Use of Earth remote sensing (ERS), permitting to obtain information from large areas with a sufficiently high resolution, can provide significant assistance in solving the mentioned problems. This paper discusses the possibility of using various means of remote sensing such as satellites and unmanned aerial vehicles (UAV), also known as drones, for receiving information in different ranges of the electromagnetic spectrum. The paper states that joint using of both these means gives new possibilities in improving railroad security.