The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These...Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.展开更多
Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and rese...Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ...In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.展开更多
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ...This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.展开更多
To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.Fir...To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.展开更多
In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high...In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high detection accuracy with respect to low altitude UAVs are put forward. In addition,the methods of UAV detection based on deep learning are of great potential in low altitude UAV detection. However,such methods need high-quality datasets to cope with the problem of high false alarm rate(FAR)and high missing alarm rate(MAR)in low altitude UAV detection,special high-quality low altitude UAV detection dataset is still lacking. A handful of known datasets for UAV detection have been rejected by their proposers for authorization and are of poor quality. In this paper,a comprehensive enhanced dataset containing UAVs and jamming objects is proposed. A large number of high-definition UAV images are obtained through real world shooting, web crawler, and data enhancement.Moreover,to cope with the challenge of low altitude UAV detection in complex backgrounds and long distance,as well as the puzzle caused by jamming objects,the noise with jamming characteristics is added to the dataset. Finally,the dataset is trained,validated,and tested by four mainstream deep learning models. The results indicate that by using data enhancement,adding noise contained jamming objects and images of UAV with complex backgrounds and long distance,the accuracy of UAV detection can be significantly improved. This work will promote the development of anti-UAV systems deeply,and more convincing evaluation criteria are provided for models optimization for UAV detection.展开更多
Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computati...Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.展开更多
Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be d...Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.展开更多
We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by c...We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.展开更多
The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow t...The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.展开更多
Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry ...Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.展开更多
This research was aimed at the defects in traditional artificial spraying control method and the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle and lat...This research was aimed at the defects in traditional artificial spraying control method and the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle and late stage of sugarcane high stalk crops.The aerial pesticide application technology for sugarcane main diseases and pests was systematically developed and demonstrated from the aspects of aircraft type choice,selection of special pesticides and auxiliaries,integration of pesticides and equipment,field operation,technical specifications,and large-scale application organization mode.The UAV model and flight technical parameters suitable for the sugarcane planting area in low-latitude plateau were analyzed,and the optimal agent formulation combination and application technology of the UAV flight control were screened out,and the UAV flight control was applied to the major sugarcane pests and diseases control in the low-latitude plateau in large scale(UAV flight control was popularized and applied to 15 527 hm 2 in 2018).The research results provided mature whole-process technical support for the normalization of the application of the UVA flight control of major sugarcane pests and diseases.The UAV control technology for major sugarcane pests and diseases had the advantages of ultra-low pesticides applying dosage and high operating efficiency,and could effectively solve the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle late growth stage of high stalk crops.This technology successfully opened up a simple,efficient and new way for the effective control of major sugarcane pests and diseases,and practically accelerated the process of integrated control and prevention of sugarcane pests and diseases.In addition,this technology had an extremely significant effect on reducing the loss of sugarcane farmers and enterprises caused by the epidemic and outbreak of sugarcane pests and diseases,increasing sugarcane yield and sugar content.At the same time,this technology played an important role in realizing the whole-process precise control of sugarcane pests and diseases,improving the quality and increasing the efficiency of sugarcane,and guaranteeing the national sugar safety.展开更多
Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to est...This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.展开更多
Taking the opportunity of the third monitoring of rocky desertification in the karst area of China,Zigui County of Hubei Province applied Unmanned Aerial Vehicle( UAV) for the first time for monitoring. Through repeat...Taking the opportunity of the third monitoring of rocky desertification in the karst area of China,Zigui County of Hubei Province applied Unmanned Aerial Vehicle( UAV) for the first time for monitoring. Through repeated trials and studies,it established technical requirements including the UAV monitoring technology for the rocky desertification,the feature point photographing,UAV video judgment of rocky desertification degree,UAV video correction misclassification subcompartment,and UAV video observation of rocky desertification control. It completed the third rocky desertification monitoring task of karst area in Zigui County.展开更多
Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Un...Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target.展开更多
This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of ...This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金support of the National Natural Science Foundation of China(Grant Nos.U2240221 and 41977229)the Sichuan Youth Science and Technology Innovation Research Team Project(Grant No.2020JDTD0006).
文摘Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources.
基金supported in part by National Key Research&Devel-opment Program of China(2021YFB2900801)in part by Guangdong Basic and Applied Basic Research Foundation(2022A1515110335)in party by Fundamental Research Funds for the Central Universities(FRF-TP-22-094A1).
文摘Unmanned Aerial Vehicles(UAVs)are gaining increasing attention in many fields,such as military,logistics,and hazardous site mapping.Utilizing UAVs to assist communications is one of the promising applications and research directions.The future Industrial Internet places higher demands on communication quality.The easy deployment,dynamic mobility,and low cost of UAVs make them a viable tool for wireless communication in the Industrial Internet.Therefore,UAVs are considered as an integral part of Industry 4.0.In this article,three typical use cases of UAVs-assisted communications in Industrial Internet are first summarized.Then,the state-of-the-art technologies for drone-assisted communication in support of the Industrial Internet are presented.According to the current research,it can be assumed that UAV-assisted communication can support the future Industrial Internet to a certain extent.Finally,the potential research directions and open challenges in UAV-assisted communications in the upcoming future Industrial Internet are discussed.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金the National Key R&D Program of China(2022YFF0604502).
文摘In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the Project Number (IF-PSAU-2021/01/18707).
文摘This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.
基金Project(60925011) supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(9140A06040510BQXXXX) supported by Advanced Research Foundation of General Armament Department,China
文摘To address the issue of premature convergence and slow convergence rate in three-dimensional (3D) route planning of unmanned aerial vehicle (UAV) low-altitude penetration,a novel route planning method was proposed.First and foremost,a coevolutionary multi-agent genetic algorithm (CE-MAGA) was formed by introducing coevolutionary mechanism to multi-agent genetic algorithm (MAGA),an efficient global optimization algorithm.A dynamic route representation form was also adopted to improve the flight route accuracy.Moreover,an efficient constraint handling method was used to simplify the treatment of multi-constraint and reduce the time-cost of planning computation.Simulation and corresponding analysis show that the planning results of CE-MAGA have better performance on terrain following,terrain avoidance,threat avoidance (TF/TA2) and lower route costs than other existing algorithms.In addition,feasible flight routes can be acquired within 2 s,and the convergence rate of the whole evolutionary process is very fast.
基金supported by the National Natural Science Foundation of China(No. 62173237)the National Key R&D Program of China(No.2018AAA0100804)+7 种基金the Zhejiang Key laboratory of General Aviation Operation technology(No.JDGA2020-7)the Talent Project of Revitalization Liaoning(No. XLYC1907022)the Key R & D Projects of Liaoning Province (No. 2020JH2/10100045)the Natural Science Foundation of Liaoning Province(No. 2019-MS-251)the Scientific Research Project of Liaoning Provincial Department of Education(No.JYT2020142)the High-Level Innovation Talent Project of Shenyang (No.RC190030)the Science and Technology Project of Beijing Municipal Commission of Education (No. KM201811417005)the Academic Research Projects of Beijing Union University(No.ZB10202005)。
文摘In recent years,the number of incidents involved with unmanned aerial vehicles(UAVs)has increased conspicuously,resulting in an increasingly urgent demand for developing anti-UAV systems. The vast requirements of high detection accuracy with respect to low altitude UAVs are put forward. In addition,the methods of UAV detection based on deep learning are of great potential in low altitude UAV detection. However,such methods need high-quality datasets to cope with the problem of high false alarm rate(FAR)and high missing alarm rate(MAR)in low altitude UAV detection,special high-quality low altitude UAV detection dataset is still lacking. A handful of known datasets for UAV detection have been rejected by their proposers for authorization and are of poor quality. In this paper,a comprehensive enhanced dataset containing UAVs and jamming objects is proposed. A large number of high-definition UAV images are obtained through real world shooting, web crawler, and data enhancement.Moreover,to cope with the challenge of low altitude UAV detection in complex backgrounds and long distance,as well as the puzzle caused by jamming objects,the noise with jamming characteristics is added to the dataset. Finally,the dataset is trained,validated,and tested by four mainstream deep learning models. The results indicate that by using data enhancement,adding noise contained jamming objects and images of UAV with complex backgrounds and long distance,the accuracy of UAV detection can be significantly improved. This work will promote the development of anti-UAV systems deeply,and more convincing evaluation criteria are provided for models optimization for UAV detection.
基金supported in part by the National Natural Science Foundation of China (62073271)the Natural Science Foundation for Distinguished Young Scholars of the Fujian Province of China (2023J06010)the Fundamental Research Funds for the Central Universities of China(20720220076)。
文摘Unmanned aerial vehicles(UAVs) have gained significant attention in practical applications, especially the low-altitude aerial(LAA) object detection imposes stringent requirements on recognition accuracy and computational resources. In this paper, the LAA images-oriented tensor decomposition and knowledge distillation-based network(TDKD-Net) is proposed,where the TT-format TD(tensor decomposition) and equalweighted response-based KD(knowledge distillation) methods are designed to minimize redundant parameters while ensuring comparable performance. Moreover, some robust network structures are developed, including the small object detection head and the dual-domain attention mechanism, which enable the model to leverage the learned knowledge from small-scale targets and selectively focus on salient features. Considering the imbalance of bounding box regression samples and the inaccuracy of regression geometric factors, the focal and efficient IoU(intersection of union) loss with optimal transport assignment(F-EIoU-OTA)mechanism is proposed to improve the detection accuracy. The proposed TDKD-Net is comprehensively evaluated through extensive experiments, and the results have demonstrated the effectiveness and superiority of the developed methods in comparison to other advanced detection algorithms, which also present high generalization and strong robustness. As a resource-efficient precise network, the complex detection of small and occluded LAA objects is also well addressed by TDKD-Net, which provides useful insights on handling imbalanced issues and realizing domain adaptation.
基金Sponsored by the Ministerial Level Foundation(K130506)
文摘Based on Matlab/Simulink and Fuzzy Logic toolboxes, the altitude control system is designed and simulated. The validity of conventional PID control method and adaptive fuzzy PID control method is compared. It can be drawn out that the adaptive fuzzy PID control method is superior to the conventional PID in rising time and overshoot etc. The effectiveness of a fuzzy PID controller shows potential application in the future, especially in the presence of model uncertainty or changing dynamics and time-varying parameters.
文摘We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.
文摘The main contribution of this paper is the design of an event-triggered formation control for leader-following consensus in second-order multi-agent systems(MASs)under communication faults.All the agents must follow the trajectories of a virtual leader despite communication faults considered as smooth time-varying delays dependent on the distance between the agents.Linear matrix inequalities(LMIs)-based conditions are obtained to synthesize a controller gain that guarantees stability of the synchronization error.Based on the closed-loop system,an event-triggered mechanism is designed to reduce the control law update and information exchange in order to reduce energy consumption.The proposed approach is implemented in a real platform of a fleet of unmanned aerial vehicles(UAVs)under communication faults.A comparison between a state-of-the-art technique and the proposed technique has been provided,demonstrating the performance improvement brought by the proposed approach.
基金supported by the National Scientific Foundation of China (No. 41773061)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Nos. CUGL160402, CUG2017G02 and CUGYCJH18-01)
文摘Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.
基金Supported by the China Agriculture Research System(CARS-170303)the Special Fund for the Construction of Modern Agricultural Technology System in Yunnan Province+1 种基金the Training Project of Yunling Industry and Technology Leading Talents(2018LJRC56)the Project for the Cooperation between Scientific Research Institutes and Enterprises in Nanhua of Lincang(LT11-12E120810-002<12-13E130328-041)
文摘This research was aimed at the defects in traditional artificial spraying control method and the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle and late stage of sugarcane high stalk crops.The aerial pesticide application technology for sugarcane main diseases and pests was systematically developed and demonstrated from the aspects of aircraft type choice,selection of special pesticides and auxiliaries,integration of pesticides and equipment,field operation,technical specifications,and large-scale application organization mode.The UAV model and flight technical parameters suitable for the sugarcane planting area in low-latitude plateau were analyzed,and the optimal agent formulation combination and application technology of the UAV flight control were screened out,and the UAV flight control was applied to the major sugarcane pests and diseases control in the low-latitude plateau in large scale(UAV flight control was popularized and applied to 15 527 hm 2 in 2018).The research results provided mature whole-process technical support for the normalization of the application of the UVA flight control of major sugarcane pests and diseases.The UAV control technology for major sugarcane pests and diseases had the advantages of ultra-low pesticides applying dosage and high operating efficiency,and could effectively solve the problems such as the difficulty in pesticides applying,labor shortage and low operating efficiency in the middle late growth stage of high stalk crops.This technology successfully opened up a simple,efficient and new way for the effective control of major sugarcane pests and diseases,and practically accelerated the process of integrated control and prevention of sugarcane pests and diseases.In addition,this technology had an extremely significant effect on reducing the loss of sugarcane farmers and enterprises caused by the epidemic and outbreak of sugarcane pests and diseases,increasing sugarcane yield and sugar content.At the same time,this technology played an important role in realizing the whole-process precise control of sugarcane pests and diseases,improving the quality and increasing the efficiency of sugarcane,and guaranteeing the national sugar safety.
文摘Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
文摘This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.
文摘Taking the opportunity of the third monitoring of rocky desertification in the karst area of China,Zigui County of Hubei Province applied Unmanned Aerial Vehicle( UAV) for the first time for monitoring. Through repeated trials and studies,it established technical requirements including the UAV monitoring technology for the rocky desertification,the feature point photographing,UAV video judgment of rocky desertification degree,UAV video correction misclassification subcompartment,and UAV video observation of rocky desertification control. It completed the third rocky desertification monitoring task of karst area in Zigui County.
基金This work was funded by the research center of the Future University in Egypt,in 2023.
文摘Utilizing artificial intelligence(AI)to protect smart coastal cities has become a novel vision for scientific and industrial institutions.One of these AI technologies is using efficient and secure multi-environment Unmanned Vehicles(UVs)for anti-submarine attacks.This study’s contribution is the early detection of a submarine assault employing hybrid environment UVs that are controlled using swarm optimization and secure the information in between UVs using a decentralized cybersecurity strategy.The Dragonfly Algorithm is used for the orientation and clustering of the UVs in the optimization approach,and the Re-fragmentation strategy is used in the Network layer of the TCP/IP protocol as a cybersecurity solution.The research’s noteworthy findings demonstrate UVs’logistical capability to promptly detect the target and address the problem while securely keeping the drone’s geographical information.The results suggest that detecting the submarine early increases the likelihood of averting a collision.The dragonfly strategy of sensing the position of the submersible and aggregating around it demonstrates the reliability of swarm intelligence in increasing access efficiency.Securing communication between Unmanned Aerial Vehicles(UAVs)improves the level of secrecy necessary for the task.The swarm navigation is based on a peer-to-peer system,which allows each UAV to access information from its peers.This,in turn,helps the UAVs to determine the best route to take and to avoid collisions with other UAVs.The dragonfly strategy also increases the speed of the mission by minimizing the time spent finding the target.
文摘This paper discusses the significance and prospects of low altitude small satellite aerial vehicles to ensure smooth aerial-ground communications for next-generation broadband networks.To achieve the generic goals of fifthgeneration and beyondwireless networks,the existing aerial network architecture needs to be revisited.The detailed architecture of low altitude aerial networks and the challenges in resource management have been illustrated in this paper.Moreover,we have studied the coordination between promising communication technologies and low altitude aerial networks to provide robust network coverage.We talk about the techniques that can ensure userfriendly control and monitoring of the low altitude aerial networks to bring forth wireless broadband connectivity to a new dimension.In the end,we highlight the future research directions of aerial-ground communications in terms of access technologies,machine learning,compressed sensing,and quantum communications.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.