With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the ope...With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.展开更多
Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,huma...Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,human-physical limits cause delays in response time,resulting in fatality and property damage.In this paper,we proposed and implemented a framework intended for creating collaboration between heterogeneous unmanned vehicles and first responders to make search and rescue operations safer and faster.The framework consists of unmanned aerial vehicles(UAVs),unmanned ground vehicles(UGVs),a cloud-based remote control station(RCS).A light-weight message queuing telemetry transport(MQTT)based communication is adopted for facilitating collaboration between autonomous systems.To effectively work under unfavorable disaster conditions,antenna tracker is developed as a tool to extend network coverage to distant areas,and mobile charging points for the UAVs are also implemented.The proposed framework’s performance is evaluated in terms of end-to-end delay and analyzed using architectural analysis and design language(AADL).Experimental measurements and simulation results show that the adopted communication protocol performs more efficiently than other conventional communication protocols,and the implemented UAV control mechanisms are functioning properly.Several scenarios are implemented to validate the overall effectiveness of the proposed framework and demonstrate possible use cases.展开更多
Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terro...Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terrorist threat. Use of Earth remote sensing (ERS), permitting to obtain information from large areas with a sufficiently high resolution, can provide significant assistance in solving the mentioned problems. This paper discusses the possibility of using various means of remote sensing such as satellites and unmanned aerial vehicles (UAV), also known as drones, for receiving information in different ranges of the electromagnetic spectrum. The paper states that joint using of both these means gives new possibilities in improving railroad security.展开更多
基金This work is supported by the Scientific Research Project of Tianjin Education Commission(No.2019KJ128).
文摘With the rapid growth of the number and flight time of unmanned aerial vehicles(UAVs),safety accidents caused by UAVs flight risk is increasing gradually.Safe air route planning is an effective means to reduce the operational risk of UAVs at the strategic level.The optimal air route planning model based on ground risk assessment is presented by considering the safety cost of UAV air route.Through the rasterization of the ground surface under the air route,the safety factor of each grid is defined with the probability of fatality on the ground per flight hour as the quantitative index.The air route safety cost function is constructed based on the safety factor of each grid.Then,the total cost function considering both air route safety and flight distance is established.The expected function of the ant colony algorithm is rebuilt and used as the algorithm to plan the air routes.The effectiveness of the new air route planning model is verified through the logistical distribution scenario on urban airspace.The results indicate that the new air route planning model considering safety factor can greatly improve the overall safety of air route under small increase of the total flight time.
基金supported partially by AirForce Research Laboratory,the Office of the Secretary of Defense(OSD)(FA8750-15-2-0116)the National Science Foundation(NSF)(1832110)the National Institute of Aerospace and Langley(C16-2B00-NCAT)。
文摘Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,human-physical limits cause delays in response time,resulting in fatality and property damage.In this paper,we proposed and implemented a framework intended for creating collaboration between heterogeneous unmanned vehicles and first responders to make search and rescue operations safer and faster.The framework consists of unmanned aerial vehicles(UAVs),unmanned ground vehicles(UGVs),a cloud-based remote control station(RCS).A light-weight message queuing telemetry transport(MQTT)based communication is adopted for facilitating collaboration between autonomous systems.To effectively work under unfavorable disaster conditions,antenna tracker is developed as a tool to extend network coverage to distant areas,and mobile charging points for the UAVs are also implemented.The proposed framework’s performance is evaluated in terms of end-to-end delay and analyzed using architectural analysis and design language(AADL).Experimental measurements and simulation results show that the adopted communication protocol performs more efficiently than other conventional communication protocols,and the implemented UAV control mechanisms are functioning properly.Several scenarios are implemented to validate the overall effectiveness of the proposed framework and demonstrate possible use cases.
文摘Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terrorist threat. Use of Earth remote sensing (ERS), permitting to obtain information from large areas with a sufficiently high resolution, can provide significant assistance in solving the mentioned problems. This paper discusses the possibility of using various means of remote sensing such as satellites and unmanned aerial vehicles (UAV), also known as drones, for receiving information in different ranges of the electromagnetic spectrum. The paper states that joint using of both these means gives new possibilities in improving railroad security.