The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by ...The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by extending the visual interface with haptic feedback, that is complementing the visual information through the sense of touch, the teleoperator has a better perception of information from the remote environment and its constraints. This paper focuses on a novel concept of haptic cueing for an airborne obstacle avoidance task; the novel cueing algorithm was designed to appear "natural" to the operator, and to improve the human-machine interface without directly acting on the actual aircraft commands. Two different haptic aiding concepts for obstacle avoidance support are presented: an existing and widely used system, belonging to what we called the Direct Haptic Aid (DItA) approach class, and a novel one based on the Indirect Haptic Aid (IHA) approach class. Tests with human operators show that a net improvement in terms of performance (i.e., the number of collisions) is provided by employing the 1HA haptic cue as compared to both the DHA haptic cue and/or the visual cues only. The results clearly show that the IHA philosophy is a valid alternative to the other commonly used approaches, which fall in the DHA category.展开更多
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential....Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.展开更多
Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the ...Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the miniaturization of sensors.UAVs are surpassing satellites and aircraft in remote sensing data supply for many local requirements.In comparison with satellite remote sensing data,most UAV remote sensing data is characterized by high resolution,small coverage area,and heterogeneous multi-sources.However,UAVs lack a unified space–time framework and standardized data process.This paper describes a UAV remote sensing data carrier that can be used as an e-commerce platform for data sharing among registered members and a mission planner for new data acquisition.To the best of our knowledge,the data carriers described herein,are the first of their kind.Through seamless docking with UAVs,the data carrier will form a national UAV network,capable of dynamically obtaining very-high-resolution UAV remote sensing images.In practice,a pilot retrieval system of UAV meta data has been developed to provide a catalogue of data product services.展开更多
[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest...[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest surface fuel load.This experimental area was located in Gaoming District,Foshan City,Guangdong Province.The average surface fuel load of the experimental area was as high as 39.33 t/ha,and the forest surface fuel load of Pinus elliottii was the highest.[Results]The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI)had a moderately strong correlation with the forest surface fuel load.The regression model of NDVI(X)and forest surface fuel load(Y)was established:Y=-5.9354X+8.4663,and the regression model of EVI(X)and forest surface fuel load(Y)was established:Y=-5.8485X+6.7271.The study also found that the linear relationship between NDVI and surface fuel load was more significant.[Conclusions]Both NDVI and EVI have moderately strong correlations with forest surface fuel load.NDVI is moderately or strongly correlated with the surface fuel load of Pinus massoniana forest,shrub grassland,broad-leaf forest and bamboo forest,while EVI is only strongly correlated with surface fuel load of broad-leaf forest and bamboo forest.It is expected that the relationship between other vegetation indices and forest surface fuel load can be obtained by the method in this study,so as to find a more universal vegetation index for calculating surface fuel load.展开更多
Recent developments in Unmanned Aerial Vehicles(UAVs)and their applications in various subjects are of interest to polar communities.Due to the harsh climate and dangerous environment,these regions pose challenges for...Recent developments in Unmanned Aerial Vehicles(UAVs)and their applications in various subjects are of interest to polar communities.Due to the harsh climate and dangerous environment,these regions pose challenges for the expedition teams.Several countries have tested the UAV technology to support Antarctic research and logistics.In this trend paper,we provide insightful reviews and discussions on such a prospective topic.Based on a comprehensive literature survey,we firstly summarize the key research progress of UAV in Antarctic studies.Then the examples of risk scenarios during the field exploration are given,after which several promising applications of the UAVs in safety guarantee are illustrated.In particular,we present a case of site-selection for the Chinese first ice sheet airfield,using the data collected in the 34th Chinese National Antarctic Research Expedition(CHINARE).In the end,we highlight the unique value of the UAVs in the popularization of polar science before concluding the advantages and limitations.Considering their excellent performance,we expect more innovations for UAV’s applications in the following Antarctic expeditions.展开更多
At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from a...At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.展开更多
Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terro...Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terrorist threat. Use of Earth remote sensing (ERS), permitting to obtain information from large areas with a sufficiently high resolution, can provide significant assistance in solving the mentioned problems. This paper discusses the possibility of using various means of remote sensing such as satellites and unmanned aerial vehicles (UAV), also known as drones, for receiving information in different ranges of the electromagnetic spectrum. The paper states that joint using of both these means gives new possibilities in improving railroad security.展开更多
文摘The sense of telepresence is known to be essential in teleoperation environments, where the operator is physically separated from the vehicle. Usually only a visual feedback is provided, but it has been shown that by extending the visual interface with haptic feedback, that is complementing the visual information through the sense of touch, the teleoperator has a better perception of information from the remote environment and its constraints. This paper focuses on a novel concept of haptic cueing for an airborne obstacle avoidance task; the novel cueing algorithm was designed to appear "natural" to the operator, and to improve the human-machine interface without directly acting on the actual aircraft commands. Two different haptic aiding concepts for obstacle avoidance support are presented: an existing and widely used system, belonging to what we called the Direct Haptic Aid (DItA) approach class, and a novel one based on the Indirect Haptic Aid (IHA) approach class. Tests with human operators show that a net improvement in terms of performance (i.e., the number of collisions) is provided by employing the 1HA haptic cue as compared to both the DHA haptic cue and/or the visual cues only. The results clearly show that the IHA philosophy is a valid alternative to the other commonly used approaches, which fall in the DHA category.
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.
基金supported by the National Natural Science Foundation of China(Grant No.91948303)。
文摘Remote sensing images carry crucial ground information,often involving the spatial distribution and spatiotemporal changes of surface elements.To safeguard this sensitive data,image encryption technology is essential.In this paper,a novel Fibonacci sine exponential map is designed,the hyperchaotic performance of which is particularly suitable for image encryption algorithms.An encryption algorithm tailored for handling the multi-band attributes of remote sensing images is proposed.The algorithm combines a three-dimensional synchronized scrambled diffusion operation with chaos to efficiently encrypt multiple images.Moreover,the keys are processed using an elliptic curve cryptosystem,eliminating the need for an additional channel to transmit the keys,thus enhancing security.Experimental results and algorithm analysis demonstrate that the algorithm offers strong security and high efficiency,making it suitable for remote sensing image encryption tasks.
基金Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA19050501)the National Natural Science Foundation of China(grant number 41771388,41971359)。
文摘Unmanned aerial vehicles(UAV)based remote sensing is an emerging and important data source.Recently,the use of UAVs for remote sensing applications has been rapidly growing owing to their greater availability and the miniaturization of sensors.UAVs are surpassing satellites and aircraft in remote sensing data supply for many local requirements.In comparison with satellite remote sensing data,most UAV remote sensing data is characterized by high resolution,small coverage area,and heterogeneous multi-sources.However,UAVs lack a unified space–time framework and standardized data process.This paper describes a UAV remote sensing data carrier that can be used as an e-commerce platform for data sharing among registered members and a mission planner for new data acquisition.To the best of our knowledge,the data carriers described herein,are the first of their kind.Through seamless docking with UAVs,the data carrier will form a national UAV network,capable of dynamically obtaining very-high-resolution UAV remote sensing images.In practice,a pilot retrieval system of UAV meta data has been developed to provide a catalogue of data product services.
基金Forestry Science and Technology Innovation Project of Guangdong Province(2018KJCX003).
文摘[Objectives]To explore the relationship between vegetation index and forest surface fuel load.[Methods]UAV multispectral remote sensing was used to obtain large-scale forest images and obtain structural data of forest surface fuel load.This experimental area was located in Gaoming District,Foshan City,Guangdong Province.The average surface fuel load of the experimental area was as high as 39.33 t/ha,and the forest surface fuel load of Pinus elliottii was the highest.[Results]The normalized difference vegetation index(NDVI)and enhanced vegetation index(EVI)had a moderately strong correlation with the forest surface fuel load.The regression model of NDVI(X)and forest surface fuel load(Y)was established:Y=-5.9354X+8.4663,and the regression model of EVI(X)and forest surface fuel load(Y)was established:Y=-5.8485X+6.7271.The study also found that the linear relationship between NDVI and surface fuel load was more significant.[Conclusions]Both NDVI and EVI have moderately strong correlations with forest surface fuel load.NDVI is moderately or strongly correlated with the surface fuel load of Pinus massoniana forest,shrub grassland,broad-leaf forest and bamboo forest,while EVI is only strongly correlated with surface fuel load of broad-leaf forest and bamboo forest.It is expected that the relationship between other vegetation indices and forest surface fuel load can be obtained by the method in this study,so as to find a more universal vegetation index for calculating surface fuel load.
基金the National Natural Science Foundation of China(Grant nos.41830536,41676176 and 41676182)the Chinese Polar Environment Comprehensive Investigation and Assessment ProgramTeng Li is also funded by the UK-China Joint Research and Innovation Partnership Fund PhD Placement Program.
文摘Recent developments in Unmanned Aerial Vehicles(UAVs)and their applications in various subjects are of interest to polar communities.Due to the harsh climate and dangerous environment,these regions pose challenges for the expedition teams.Several countries have tested the UAV technology to support Antarctic research and logistics.In this trend paper,we provide insightful reviews and discussions on such a prospective topic.Based on a comprehensive literature survey,we firstly summarize the key research progress of UAV in Antarctic studies.Then the examples of risk scenarios during the field exploration are given,after which several promising applications of the UAVs in safety guarantee are illustrated.In particular,we present a case of site-selection for the Chinese first ice sheet airfield,using the data collected in the 34th Chinese National Antarctic Research Expedition(CHINARE).In the end,we highlight the unique value of the UAVs in the popularization of polar science before concluding the advantages and limitations.Considering their excellent performance,we expect more innovations for UAV’s applications in the following Antarctic expeditions.
基金funded by the National Key Technologies R&D Program of China (Grants No. 2017YFC0505104)the Key Laboratory of Digital Mapping and Land Information Application of National Administration of Surveying, Mapping and Geoinformation of China (Grants No. DM2016SC09)
文摘At 5:39 am on June 24, 2017, a landslide occurred in the village of Xinmo in Maoxian County, Aba Tibet and Qiang Autonomous Prefecture(Sichuan Province, Southwest China). On June 25, aerial images were acquired from an unmanned aerial vehicle(UAV), and a digital elevation model(DEM) was processed. Landslide geometrical features were then analyzed. These are the front and rear edge elevation, accumulation area and horizontal sliding distance. Then, the volume and the spatial distribution of the thickness of the deposit were calculated from the difference between the DEM available before the landslide, and the UAV-derived DEM collected after the landslide. Also, the disaster was assessed using high-resolution satellite images acquired before the landslide. These include Quick Bird, Pleiades-1 and GF-2 images with spatial resolutions of 0.65 m, 0.70 m, and 0.80 m, respectively, and the aerial images acquired from the UAV after the landslide with a spatial resolution of 0.1 m. According to the analysis, the area of the landslide was 1.62 km2, and the volume of the landslide was 7.70 ± 1.46 million m3. The average thickness of the landslide accumulation was approximately 8 m. The landslide destroyed a total of 103 buildings. The area of destroyed farmlands was 2.53 ha, and the orchard area was reduced by 28.67 ha. A 2-km section of Songpinggou River was blocked and a 2.1-km section of township road No. 104 was buried. Constrained by the terrain conditions, densely populated and more economically developed areas in the upper reaches of the Minjiang River basin are mainly located in the bottom of the valleys. This is a dangerous area regarding landslide, debris flow and flash flood events Therefore, in mountainous, high-risk disaster areas, it is important to carefully select residential sites to avoid a large number of casualties.
文摘Improving the rail transport security requires development and implementation of neoteric monitoring and control facilities in conditions of increasing speed and intensity of the train movement and high level of terrorist threat. Use of Earth remote sensing (ERS), permitting to obtain information from large areas with a sufficiently high resolution, can provide significant assistance in solving the mentioned problems. This paper discusses the possibility of using various means of remote sensing such as satellites and unmanned aerial vehicles (UAV), also known as drones, for receiving information in different ranges of the electromagnetic spectrum. The paper states that joint using of both these means gives new possibilities in improving railroad security.