In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanne...In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.展开更多
Recently,autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare,agriculture,industrial automation,etc.Among the interest...Recently,autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare,agriculture,industrial automation,etc.Among the interesting applications of autonomous systems,their applicability in agricultural sector becomes significant.Autonomous unmanned aerial vehicles(UAVs)can be used for suitable site-specific weed management(SSWM)to improve crop productivity.In spite of substantial advancements in UAV based data collection systems,automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops.The recently developed deep learning(DL)models have exhibited effective performance in several data classification problems.In this aspect,this paper focuses on the design of autonomous UAVs with decision support system for weed management(AUAV-DSSWM)technique.The proposed AUAV-DSSWM technique intends to identify the weeds by the use of UAV images acquired from the target area.Besides,the AUAV-DSSWM technique primarily performs image acquisition and image pre-processing stages.Moreover,the Adam optimizer with You Only Look Once Object Detector-(YOLOv3)model is applied for the detection of weeds.For the effective classification of weeds and crops,the poor and rich optimization(PRO)algorithm with softmax layer is applied.The design of Adam optimizer and PRO algorithm for the parameter tuning process results in enhanced weed detection performance.A wide range of simulations take place on UAV images and the experimental results exhibit the promising performance of the AUAV-DSSWM technique over the other recent techniques with the accy of 99.23%.展开更多
In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those ...In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those changes. Especially, in case of maritime environment, as the center stage of combat has changed from ocean to coastal areas, it is difficult for the existing naval forces to effectively operate in shallow waters. Therefore, unmanned underwater vehicles (UUVs) are being required at an increasing pace. In this paper, we analyze the characteristics of already developed UUVs, which are the key unmanned system of the marine battlefield environment in the future. Through the analysis of development cases and the investigation of the essential technologies, the critical design issues of UUVs are elaborated. We also suggest the future directions of the UUV technologies based on the case analysis.展开更多
In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which c...In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which can be autonomously operated without the operator intervention is increasing dramatically. The growing interests lie in the facts that those USVs can be manufactured at much lower costs, and can be operated without the human fatigue, while can be sent to the hostile or quite dangerous areas that are inherently unhealthy for human operators. The utilization and the deployment of such vessels will continue to grow in the future. In this paper, along with the technological development of unmanned surface vehicles, we investigate and analyze the cases of already developed platforms and identify the trends of the technological advances. Additionally, we suggest the future directions of development.展开更多
Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions.These systems are developed under the term Artificia...Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions.These systems are developed under the term Artificial Intelligence(AI)safety.AI safety is essential to provide reliable service to consumers in various fields such asmilitary,education,healthcare,and automotive.This paper presents the design of an AI safety algorithmfor safe autonomous navigation using Reinforcement Learning(RL).Machine Learning Agents Toolkit(ML-Agents)was used to train the agentwith a proximal policy optimizer algorithmwith an intrinsic curiositymodule(PPO+ICM).This training aims to improve AI safety and minimize or prevent any mistakes that can cause dangerous collisions by the intelligent agent.Four experiments have been executed to validate the results of our research.The designed algorithmwas tested in a virtual environment with four differentmodels.A comparison was presented in four cases to identify the best-performing model for improvingAI safety.The designed algorithmenabled the intelligent agent to perform the required task safely using RL.A goal collision ratio of 64%was achieved,and the collision incidents were minimized from 134 to 52 in the virtual environment within 30min.展开更多
Swarm robotics in maritime engineering is a promising approach characterized by large numbers of relatively small and inexpensive autonomous aquatic crafts (AACs) to monitor marine environments. Compared with a single...Swarm robotics in maritime engineering is a promising approach characterized by large numbers of relatively small and inexpensive autonomous aquatic crafts (AACs) to monitor marine environments. Compared with a single, large aquatic manned or unmanned surface vehicle, a highly distributed aquatic swarm system with several AACs features advantages in numerous real-world maritime missions, and its natural potential is qualified for new classes of tasks that uniformly feature low cost and high efficiency through time. This article develops an inexpensive AAC based on an embedded-systemcompanion computer and open-source autopilot, providing a verification platform for education and research on swarm algorithm on water surfaces. A topology communication network, including an inner communication network to exchange information among AACs and an external communication network for monitoring the state of the AAC Swarm System (AACSS), was designed based on the topology built into the Xbee units for the AACSS. In the emergence control network, the transmitter and receiver were coupled to distribute or recover the AAC. The swarm motion behaviors in AAC were resolved into the capabilities of go-to-waypoint and path following, which can be accomplished by two uncoupled controllers: speed controller and heading controller. The good performance of velocity and heading controllers in go-to-waypoint was proven in a series of simulations. Path following was achieved by tracking a set of ordered waypoints in the go-to-waypoint. Finally, a sea trial conducted at the China National Deep Sea Center successfully demonstrated the motion capability of the AAC. The sea trial results showed that the AAC is suited to carry out environmental monitoring tasks by efficiently covering the desired path, allowing for redundancy in the data collection process and tolerating the individual AACs’ path-following offset caused by winds and waves.展开更多
随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面...随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面无人平台系统安全分析方法。围绕遥控操作地面无人平台系统安全,通过STPA方法识别UGV系统中的不安全控制行为及其潜在风险,并利用Bow-Tie模型分析从损失致因场景到可能事故后果的事件链,得到风险传播路径和风险扩散路径。最终,基于Bow-Tie分析结果确定主被动安全分级控制措施,并通过自主安全控制器实现了系统安全管理。展开更多
We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reco...We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.展开更多
基金the Military Science Postgraduate Project of PLA(JY2020B006).
文摘In the process of performing a task,autonomous unmanned systems face the problem of scene changing,which requires the ability of real-time decision-making under dynamically changing scenes.Therefore,taking the unmanned system coordinative region control operation as an example,this paper combines knowledge representation with probabilistic decisionmaking and proposes a role-based Bayesian decision model for autonomous unmanned systems that integrates scene cognition and individual preferences.Firstly,according to utility value decision theory,the role-based utility value decision model is proposed to realize task coordination according to the preference of the role that individual is assigned.Then,multi-entity Bayesian network is introduced for situation assessment,by which scenes and their uncertainty related to the operation are semantically described,so that the unmanned systems can conduct situation awareness in a set of scenes with uncertainty.Finally,the effectiveness of the proposed method is verified in a virtual task scenario.This research has important reference value for realizing scene cognition,improving cooperative decision-making ability under dynamic scenes,and achieving swarm level autonomy of unmanned systems.
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa UniversityRiyadh,Saudi Arabia.Taif University Researchers Supporting Project number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Recently,autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare,agriculture,industrial automation,etc.Among the interesting applications of autonomous systems,their applicability in agricultural sector becomes significant.Autonomous unmanned aerial vehicles(UAVs)can be used for suitable site-specific weed management(SSWM)to improve crop productivity.In spite of substantial advancements in UAV based data collection systems,automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops.The recently developed deep learning(DL)models have exhibited effective performance in several data classification problems.In this aspect,this paper focuses on the design of autonomous UAVs with decision support system for weed management(AUAV-DSSWM)technique.The proposed AUAV-DSSWM technique intends to identify the weeds by the use of UAV images acquired from the target area.Besides,the AUAV-DSSWM technique primarily performs image acquisition and image pre-processing stages.Moreover,the Adam optimizer with You Only Look Once Object Detector-(YOLOv3)model is applied for the detection of weeds.For the effective classification of weeds and crops,the poor and rich optimization(PRO)algorithm with softmax layer is applied.The design of Adam optimizer and PRO algorithm for the parameter tuning process results in enhanced weed detection performance.A wide range of simulations take place on UAV images and the experimental results exhibit the promising performance of the AUAV-DSSWM technique over the other recent techniques with the accy of 99.23%.
文摘In recent years, the weapon systems have been changing drastically because of the advancement of science technology and the change of military concept of combat. There is an unmanned system at the center of all those changes. Especially, in case of maritime environment, as the center stage of combat has changed from ocean to coastal areas, it is difficult for the existing naval forces to effectively operate in shallow waters. Therefore, unmanned underwater vehicles (UUVs) are being required at an increasing pace. In this paper, we analyze the characteristics of already developed UUVs, which are the key unmanned system of the marine battlefield environment in the future. Through the analysis of development cases and the investigation of the essential technologies, the critical design issues of UUVs are elaborated. We also suggest the future directions of the UUV technologies based on the case analysis.
文摘In recent years, because of the development of marine military science technology, there is a growing interest in the unmanned systems throughout the world. Also, the demand of Unmanned Surface Vehicles (USVs) which can be autonomously operated without the operator intervention is increasing dramatically. The growing interests lie in the facts that those USVs can be manufactured at much lower costs, and can be operated without the human fatigue, while can be sent to the hostile or quite dangerous areas that are inherently unhealthy for human operators. The utilization and the deployment of such vessels will continue to grow in the future. In this paper, along with the technological development of unmanned surface vehicles, we investigate and analyze the cases of already developed platforms and identify the trends of the technological advances. Additionally, we suggest the future directions of development.
基金the United States Air Force Office of Scientific Research(AFOSR)contract FA9550-22-1-0268 awarded to KHA,https://www.afrl.af.mil/AFOSR/.The contract is entitled:“Investigating Improving Safety of Autonomous Exploring Intelligent Agents with Human-in-the-Loop Reinforcement Learning,”and in part by Jackson State University.
文摘Autonomous agents can explore the environment around them when equipped with advanced hardware and software systems that help intelligent agents minimize collisions.These systems are developed under the term Artificial Intelligence(AI)safety.AI safety is essential to provide reliable service to consumers in various fields such asmilitary,education,healthcare,and automotive.This paper presents the design of an AI safety algorithmfor safe autonomous navigation using Reinforcement Learning(RL).Machine Learning Agents Toolkit(ML-Agents)was used to train the agentwith a proximal policy optimizer algorithmwith an intrinsic curiositymodule(PPO+ICM).This training aims to improve AI safety and minimize or prevent any mistakes that can cause dangerous collisions by the intelligent agent.Four experiments have been executed to validate the results of our research.The designed algorithmwas tested in a virtual environment with four differentmodels.A comparison was presented in four cases to identify the best-performing model for improvingAI safety.The designed algorithmenabled the intelligent agent to perform the required task safely using RL.A goal collision ratio of 64%was achieved,and the collision incidents were minimized from 134 to 52 in the virtual environment within 30min.
文摘Swarm robotics in maritime engineering is a promising approach characterized by large numbers of relatively small and inexpensive autonomous aquatic crafts (AACs) to monitor marine environments. Compared with a single, large aquatic manned or unmanned surface vehicle, a highly distributed aquatic swarm system with several AACs features advantages in numerous real-world maritime missions, and its natural potential is qualified for new classes of tasks that uniformly feature low cost and high efficiency through time. This article develops an inexpensive AAC based on an embedded-systemcompanion computer and open-source autopilot, providing a verification platform for education and research on swarm algorithm on water surfaces. A topology communication network, including an inner communication network to exchange information among AACs and an external communication network for monitoring the state of the AAC Swarm System (AACSS), was designed based on the topology built into the Xbee units for the AACSS. In the emergence control network, the transmitter and receiver were coupled to distribute or recover the AAC. The swarm motion behaviors in AAC were resolved into the capabilities of go-to-waypoint and path following, which can be accomplished by two uncoupled controllers: speed controller and heading controller. The good performance of velocity and heading controllers in go-to-waypoint was proven in a series of simulations. Path following was achieved by tracking a set of ordered waypoints in the go-to-waypoint. Finally, a sea trial conducted at the China National Deep Sea Center successfully demonstrated the motion capability of the AAC. The sea trial results showed that the AAC is suited to carry out environmental monitoring tasks by efficiently covering the desired path, allowing for redundancy in the data collection process and tolerating the individual AACs’ path-following offset caused by winds and waves.
文摘随着地面无人平台(Unmanned Ground Vehicles,UGVs)在复杂作业环境中的潜在应用和战略价值日益凸显,确保其自主行为的安全性变得至关重要。提出一种结合系统理论过程分析(System-Theoretic Process Analysis,STPA)和Bow-Tie模型的地面无人平台系统安全分析方法。围绕遥控操作地面无人平台系统安全,通过STPA方法识别UGV系统中的不安全控制行为及其潜在风险,并利用Bow-Tie模型分析从损失致因场景到可能事故后果的事件链,得到风险传播路径和风险扩散路径。最终,基于Bow-Tie分析结果确定主被动安全分级控制措施,并通过自主安全控制器实现了系统安全管理。
基金funding from the Australian Government,via grant AUSMURIB000001 associated with ONR MURI Grant N00014-19-1-2571。
文摘We consider a scenario where an unmanned aerial vehicle(UAV),a typical unmanned aerial system(UAS),transmits confidential data to a moving ground target in the presence of multiple eavesdroppers.Multiple friendly reconfigurable intelligent surfaces(RISs) help to secure the UAV-target communication and improve the energy efficiency of the UAV.We formulate an optimization problem to minimize the energy consumption of the UAV,subject to the mobility constraint of the UAV and that the achievable secrecy rate at the target is over a given threshold.We present an online planning method following the framework of model predictive control(MPC) to jointly optimize the motion of the UAV and the configurations of the RISs.The effectiveness of the proposed method is validated via computer simulations.