The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suf...Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.展开更多
In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial ...In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.展开更多
This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional ...This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.展开更多
IN recent years,unmanned aerial vehicles(UAVs)have been widely employed in different applications,both military and civilian.Especially,a fast growing civil UAV market is predicted over the next decades.However,most c...IN recent years,unmanned aerial vehicles(UAVs)have been widely employed in different applications,both military and civilian.Especially,a fast growing civil UAV market is predicted over the next decades.However,most currently developed UAVs depend on simple control strategy.They require exact modeling of the UAVs dynamics and are vulnerable to external disturbance.Therefore,there is great展开更多
Recently,autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare,agriculture,industrial automation,etc.Among the interest...Recently,autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare,agriculture,industrial automation,etc.Among the interesting applications of autonomous systems,their applicability in agricultural sector becomes significant.Autonomous unmanned aerial vehicles(UAVs)can be used for suitable site-specific weed management(SSWM)to improve crop productivity.In spite of substantial advancements in UAV based data collection systems,automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops.The recently developed deep learning(DL)models have exhibited effective performance in several data classification problems.In this aspect,this paper focuses on the design of autonomous UAVs with decision support system for weed management(AUAV-DSSWM)technique.The proposed AUAV-DSSWM technique intends to identify the weeds by the use of UAV images acquired from the target area.Besides,the AUAV-DSSWM technique primarily performs image acquisition and image pre-processing stages.Moreover,the Adam optimizer with You Only Look Once Object Detector-(YOLOv3)model is applied for the detection of weeds.For the effective classification of weeds and crops,the poor and rich optimization(PRO)algorithm with softmax layer is applied.The design of Adam optimizer and PRO algorithm for the parameter tuning process results in enhanced weed detection performance.A wide range of simulations take place on UAV images and the experimental results exhibit the promising performance of the AUAV-DSSWM technique over the other recent techniques with the accy of 99.23%.展开更多
Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mi...Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.展开更多
We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by c...We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.展开更多
Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry ...Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.展开更多
Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to est...This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.展开更多
Taking the opportunity of the third monitoring of rocky desertification in the karst area of China,Zigui County of Hubei Province applied Unmanned Aerial Vehicle( UAV) for the first time for monitoring. Through repeat...Taking the opportunity of the third monitoring of rocky desertification in the karst area of China,Zigui County of Hubei Province applied Unmanned Aerial Vehicle( UAV) for the first time for monitoring. Through repeated trials and studies,it established technical requirements including the UAV monitoring technology for the rocky desertification,the feature point photographing,UAV video judgment of rocky desertification degree,UAV video correction misclassification subcompartment,and UAV video observation of rocky desertification control. It completed the third rocky desertification monitoring task of karst area in Zigui County.展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly ...In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,a...Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test.展开更多
To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target trackin...To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted.展开更多
With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to inte...With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.展开更多
This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results...This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.展开更多
The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aer...The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金National Natural Science Foundation of China(61973037)National 173 Program Project(2019-JCJQ-ZD-324)。
文摘Uniform linear array(ULA)radars are widely used in the collision-avoidance radar systems of small unmanned aerial vehicles(UAVs).In practice,a ULA's multi-target direction of arrival(DOA)estimation performance suffers from significant performance degradation owing to the limited number of physical elements.To improve the underdetermined DOA estimation performance of a ULA radar mounted on a small UAV platform,we propose a nonuniform linear motion sampling underdetermined DOA estimation method.Using the motion of the UAV platform,the echo signal is sampled at different positions.Then,according to the concept of difference co-array,a virtual ULA with multiple array elements and a large aperture is synthesized to increase the degrees of freedom(DOFs).Through position analysis of the original and motion arrays,we propose a nonuniform linear motion sampling method based on ULA for determining the optimal DOFs.Under the condition of no increase in the aperture of the physical array,the proposed method obtains a high DOF with fewer sampling runs and greatly improves the underdetermined DOA estimation performance of ULA.The results of numerical simulations conducted herein verify the superior performance of the proposed method.
基金the National Key R&D Program of China(2022YFF0604502).
文摘In order to improve target localization precision,accuracy,execution efficiency,and application range of the unmanned aerial vehicle(UAV)based on scene matching,a ground target localization method for unmanned aerial vehicle based on scene matching(GTLUAVSM)is proposed.The sugges-ted approach entails completing scene matching through a feature matching algorithm.Then,multi-sensor registration is optimized by robust estimation based on homologous registration.Finally,basemap generation and model solution are utilized to improve basemap correspondence and accom-plish aerial image positioning.Theoretical evidence and experimental verification demonstrate that GTLUAVSM can improve localization accuracy,speed,and precision while minimizing reliance on task equipment.
基金funded by the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia through the Project Number (IF-PSAU-2021/01/18707).
文摘This paper presents a machine-learning method for detecting jamming UAVs and classifying nodes during jamming attacks onWireless Sensor Networks(WSNs).Jamming is a type of Denial of Service(DoS)attack and intentional interference where a malicious node transmits a high-power signal to increase noise on the receiver side to disrupt the communication channel and reduce performance significantly.To defend and prevent such attacks,the first step is to detect them.The current detection approaches use centralized techniques to detect jamming,where each node collects information and forwards it to the base station.As a result,overhead and communication costs increased.In this work,we present a jamming attack and classify nodes into different categories based on their location to the jammer by employing a single node observer.As a result,we introduced a machine learning model that uses distance ratios and power received as features to detect such attacks.Furthermore,we considered several types of jammers transmitting at different power levels to evaluate the proposed metrics using MATLAB.With a detection accuracy of 99.7%for the k-nearest neighbors(KNN)algorithm and average testing accuracy of 99.9%,the presented solution is capable of efficiently and accurately detecting jamming attacks in wireless sensor networks.
文摘IN recent years,unmanned aerial vehicles(UAVs)have been widely employed in different applications,both military and civilian.Especially,a fast growing civil UAV market is predicted over the next decades.However,most currently developed UAVs depend on simple control strategy.They require exact modeling of the UAVs dynamics and are vulnerable to external disturbance.Therefore,there is great
基金This research was supported by the Researchers Supporting Program(TUMAProject-2021-27)Almaarefa UniversityRiyadh,Saudi Arabia.Taif University Researchers Supporting Project number(TURSP-2020/161),Taif University,Taif,Saudi Arabia.
文摘Recently,autonomous systems become a hot research topic among industrialists and academicians due to their applicability in different domains such as healthcare,agriculture,industrial automation,etc.Among the interesting applications of autonomous systems,their applicability in agricultural sector becomes significant.Autonomous unmanned aerial vehicles(UAVs)can be used for suitable site-specific weed management(SSWM)to improve crop productivity.In spite of substantial advancements in UAV based data collection systems,automated weed detection still remains a tedious task owing to the high resemblance of weeds to the crops.The recently developed deep learning(DL)models have exhibited effective performance in several data classification problems.In this aspect,this paper focuses on the design of autonomous UAVs with decision support system for weed management(AUAV-DSSWM)technique.The proposed AUAV-DSSWM technique intends to identify the weeds by the use of UAV images acquired from the target area.Besides,the AUAV-DSSWM technique primarily performs image acquisition and image pre-processing stages.Moreover,the Adam optimizer with You Only Look Once Object Detector-(YOLOv3)model is applied for the detection of weeds.For the effective classification of weeds and crops,the poor and rich optimization(PRO)algorithm with softmax layer is applied.The design of Adam optimizer and PRO algorithm for the parameter tuning process results in enhanced weed detection performance.A wide range of simulations take place on UAV images and the experimental results exhibit the promising performance of the AUAV-DSSWM technique over the other recent techniques with the accy of 99.23%.
基金supportes by the National Nature Science Foundation o f China (71771215,62122093)。
文摘Unmanned air vehicles(UAVs) have been regularly employed in modern wars to conduct different missions. Instead of addressing mission planning and route planning separately,this study investigates the issue of joint mission and route planning for a fleet of UAVs. The mission planning determines the configuration of weapons in UAVs and the weapons to attack targets, while the route planning determines the UAV’s visiting sequence for the targets. The problem is formulated as an integer linear programming model. Due to the inefficiency of CPLEX on large scale optimization problems, an effective learningbased heuristic, namely, population based adaptive large neighborhood search(P-ALNS), is proposed to solve the model. In P-ALNS, seven neighborhood structures are designed and adaptively utilized in terms of their historical performance. The effectiveness and superiority of the proposed model and algorithm are demonstrated on test instances of small, medium and large sizes. In particular, P-ALNS achieves comparable solutions or as good as those of CPLEX on small-size(20 targets)instances in much shorter time.
文摘We tried more precise mapping of vegetation using UAV?(unmanned aerial vehicle), as a new method of creating vegetation maps, and we?objected to be clearly the efficient mapping of vegetation using the UAV method by comparing vegetation maps created by analysing aerial photographs taken by a UAV and an aircraft (manned flight). The aerial photography using UAV was conducted in the Niida River estuary (the secondary river flowing into Minamisoma City in Fukushima Prefecture, Japan). The photography period was in August 2013. We analysed the aerial photographs using ArcGis 9 (Esri Japan Corporation, Tokyo, Japan). The aerial photographs of the main plant communities (Phragmites australis,?Typha domingensis, and?Miscanthus sacchariflorus) taken by the UAV could clearly discriminate each plant community at the 1/50 scale. Moreover, it could clearly discriminate the shape of a plant at the 1/10 scale. We compared the vegetation maps by analysing the aerial photos taken by a UAV (2013 shooting) and an aircraft (2011 shooting). As a result, the vegetation map created by the UAV method could clearly discriminate community distributions. We conclude that vegetation surveys using UAV are possible and are capable of a highly precise community division in places where field reconnaissance is difficult. The UAV method is effective and will contribute to the improvement of research methods in the future;this method may reduce research costs associated with a reduction in field survey days and man-power.
基金supported by the National Scientific Foundation of China (No. 41773061)the Fundamental Research Funds for the Central Universities,China University of Geosciences (Wuhan) (Nos. CUGL160402, CUG2017G02 and CUGYCJH18-01)
文摘Yardangs are wind-eroded ridges usually observed in arid regions on Earth and other planets. Previous geomorphology studies of terrestrial yardang fields depended on satellite data and limited fieldwork. The geometry measurements of those yardangs based on satellite data are limited to the length, the width, and the spacing between the yardangs; elevations could not be studied due to the relatively low resolution of the satellite acquired elevation data, e.g. digital elevation models(DEMs). However, the elevation information(e.g. heights of the yardang surfaces) and related information(e.g. slope) of the yardangs are critical to understanding the characteristics and evolution of these aeolian features. Here we report a novel approach, using unmanned aerial vehicles(UAVs) to generate centimeterresolution orthomosaics and DEMs for the study of whaleback yardangs in Qaidam Basin, NW China. The ultra-high-resolution data provide new insights into the geomorphology characteristics and evolution of the whaleback yardangs in Qaidam Basin. These centimeter-resolution datasets also have important potential in:(1) high accuracy estimation of erosion volume;(2) modeling in very fine scale of wind dynamics related to yardang formation;(3) detailed comparative planetary geomorphology study for Mars, Venus, and Titan.
文摘Remote sensing has played a pivotal role in our understanding of the geometry of dykes and dyke swarms on Earth,Venus and Mars(West and Ernst,1991;Mege and Masson,1995;Ernst et al.,2005).Since the 1970’s
文摘This research focuses on trajectory generation algorithms that take into account the stealthiness of autonomous UAVs;generating stealthy paths through a region laden with enemy radars. The algorithm is employed to estimate the risk cost of the navigational space and generate an optimized path based on the user-specified threshold altitude value. Thus the generated path is represented with a set of low-radar risk waypoints being the coordinates of its control points. The radar-aware path planner is then approximated using cubic B-splines by considering the least radar risk to the destination. Simulated results are presented, illustrating the potential benefits of such algorithms.
文摘Taking the opportunity of the third monitoring of rocky desertification in the karst area of China,Zigui County of Hubei Province applied Unmanned Aerial Vehicle( UAV) for the first time for monitoring. Through repeated trials and studies,it established technical requirements including the UAV monitoring technology for the rocky desertification,the feature point photographing,UAV video judgment of rocky desertification degree,UAV video correction misclassification subcompartment,and UAV video observation of rocky desertification control. It completed the third rocky desertification monitoring task of karst area in Zigui County.
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.
文摘In a rechargeable wireless sensor network,utilizing the unmanned aerial vehicle(UAV)as a mobile base station(BS)to charge sensors and collect data effectively prolongs the network’s lifetime.In this paper,we jointly optimize the UAV’s flight trajectory and the sensor selection and operation modes to maximize the average data traffic of all sensors within a wireless sensor network(WSN)during finite UAV’s flight time,while ensuring the energy required for each sensor by wireless power transfer(WPT).We consider a practical scenario,where the UAV has no prior knowledge of sensor locations.The UAV performs autonomous navigation based on the status information obtained within the coverage area,which is modeled as a Markov decision process(MDP).The deep Q-network(DQN)is employed to execute the navigation based on the UAV position,the battery level state,channel conditions and current data traffic of sensors within the UAV’s coverage area.Our simulation results demonstrate that the DQN algorithm significantly improves the network performance in terms of the average data traffic and trajectory design.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
文摘Multi-objective optimization design of the gas-filled bag cushion landing system is investigated.Firstly,the landing process of airbag is decomposed into a adiabatic compression and a release of landing shock energy,and the differential equation of cylindrical gas-filled bag is presented from a theoretical perspective based on the ideal gas state equation and dynamic equation.Then,the effects of exhaust areas and blasting pressure on buffer characteristics are studied,taking those parameters as design variable for the multiobjective optimization problem,and the solution can be determined by comparing Pareto set,which is gained by NSGA-Ⅱ.Finally,the feasibility of the design scheme is verified by experimental results of the ground test.
基金supported by the National Natural Science Foundation of China(No.61304223)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20123218120015)the Fundamental Research Funds for the Central Universities(No.NZ2015206)
文摘To date unmanned aerial system(UAS)technologies have attracted more and more attention from countries in the world.Unmanned aerial vehicles(UAVs)play an important role in reconnaissance,surveillance,and target tracking within military and civil fields.Here one briefly introduces the development of UAVs,and reviews its various subsystems including autopilot,ground station,mission planning and management subsystem,navigation system and so on.Furthermore,an overview is provided for advanced design methods of UAVs control system,including the linear feedback control,adaptive and nonlinear control,and intelligent control techniques.Finally,the future of UAVs flight control techniques is forecasted.
基金supported in part by the National Natural Science Foundation of China (No. 91638205, 91438206, 61771286, 61621091)
文摘With rapid development of unmanned aerial vehicles(UAVs), more and more UAVs access satellite networks for data transmission. To improve the spectral efficiency, non-orthogonal multiple access(NOMA) is adopted to integrate UAVs into the satellite network, where multiple satellites cooperatively serve the UAVs and mobile terminal using the Ku-band and above. Taking into account the rain fading and the fading correlation, the outage performance is first analytically obtained for fixed power allocation and then efficiently calculated by the proposed power allocation algorithm to guarantee the user fairness. Simulation results verify the outage performance analysis and show the performance improvement of the proposed power allocation scheme.
基金supported in part by the National Natural Science Foundation of China(61673106)the Natural Science Foundation of Jiangsu Province(BK20171362)the Fundamental Research Funds for the Central Universities(2242019K40024)
文摘This paper proposes a new distributed formation flight protocol for unmanned aerial vehicles(UAVs)to perform coordinated circular tracking around a set of circles on a target sphere.Different from the previous results limited in bidirectional networks and disturbance-free motions,this paper handles the circular formation flight control problem with both directed network and spatiotemporal disturbance with the knowledge of its upper bound.Distinguishing from the design of a common Lyapunov fiunction for bidirectional cases,we separately design the control for the circular tracking subsystem and the formation keeping subsystem with the circular tracking error as input.Then the whole control system is regarded as a cascade connection of these two subsystems,which is proved to be stable by input-tostate stability(ISS)theory.For the purpose of encountering the external disturbance,the backstepping technology is introduced to design the control inputs of each UAV pointing to North and Down along the special sphere(say,the circular tracking control algorithm)with the help of the switching function.Meanwhile,the distributed linear consensus protocol integrated with anther switching anti-interference item is developed to construct the control input of each UAV pointing to east along the special sphere(say,the formation keeping control law)for formation keeping.The validity of the proposed control law is proved both in the rigorous theory and through numerical simulations.
基金supported by Joint Fund of Natural Science Foundation of Zhejiang-Qingshanhu Science and Technology City(Grant No.LQY18C160002)National Natural Science Foundation of China(Grant No.U1809208)+1 种基金Zhejiang Science and Technology Key R&D Program Funded Project(Grant No.2018C02013)Natural Science Foundation of Zhejiang Province(Grant No.LQ20F020005).
文摘The diversity of tree species and the complexity of land use in cities create challenging issues for tree species classification.The combination of deep learning methods and RGB optical images obtained by unmanned aerial vehicles(UAVs) provides a new research direction for urban tree species classification.We proposed an RGB optical image dataset with 10 urban tree species,termed TCC10,which is a benchmark for tree canopy classification(TCC).TCC10 dataset contains two types of data:tree canopy images with simple backgrounds and those with complex backgrounds.The objective was to examine the possibility of using deep learning methods(AlexNet,VGG-16,and ResNet-50) for individual tree species classification.The results of convolutional neural networks(CNNs) were compared with those of K-nearest neighbor(KNN) and BP neural network.Our results demonstrated:(1) ResNet-50 achieved an overall accuracy(OA) of 92.6% and a kappa coefficient of 0.91 for tree species classification on TCC10 and outperformed AlexNet and VGG-16.(2) The classification accuracy of KNN and BP neural network was less than70%,while the accuracy of CNNs was relatively higher.(3)The classification accuracy of tree canopy images with complex backgrounds was lower than that for images with simple backgrounds.For the deciduous tree species in TCC10,the classification accuracy of ResNet-50 was higher in summer than that in autumn.Therefore,the deep learning is effective for urban tree species classification using RGB optical images.