期刊文献+
共找到160篇文章
< 1 2 8 >
每页显示 20 50 100
Optimal confrontation position selecting games model and its application to one-on-one air combat
1
作者 Zekun Duan Genjiu Xu +2 位作者 Xin Liu Jiayuan Ma Liying Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期417-428,共12页
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco... In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm. 展开更多
关键词 unmanned aerial vehicles(UAVs) air combat Continuous strategy space Mixed strategy Nash equilibrium
下载PDF
Weapon configuration, allocation and route planning with time windows for multiple unmanned combat air vehicles 被引量:5
2
作者 ZHANG Jiaming LIU Zhong +1 位作者 SHI Jianmai CHEN Chao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期953-968,共16页
Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA... Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems. 展开更多
关键词 unmanned combat air vehicles(ucavs) mission planning route planning weapon configuration time windows
下载PDF
A Predator-prey Particle Swarm Optimization Approach to Multiple UCAV Air Combat Modeled by Dynamic Game Theory 被引量:27
3
作者 Haibin Duan Pei Li Yaxiang Yu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2015年第1期11-18,共8页
Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, e... Dynamic game theory has received considerable attention as a promising technique for formulating control actions for agents in an extended complex enterprise that involves an adversary. At each decision making step, each side seeks the best scheme with the purpose of maximizing its own objective function. In this paper, a game theoretic approach based on predatorprey particle swarm optimization (PP-PSO) is presented, and the dynamic task assignment problem for multiple unmanned combat aerial vehicles (UCAVs) in military operation is decomposed and modeled as a two-player game at each decision stage. The optimal assignment scheme of each stage is regarded as a mixed Nash equilibrium, which can be solved by using the PP-PSO. The effectiveness of our proposed methodology is verified by a typical example of an air military operation that involves two opposing forces: the attacking force Red and the defense force Blue. © 2014 Chinese Association of Automation. 展开更多
关键词 aircraft control airSHIPS Combinatorial optimization Computation theory Decision making Military operations Military vehicles Particle swarm optimization (PSO)
下载PDF
A Multi-UCAV cooperative occupation method based on weapon engagement zones for beyond-visual-range air combat 被引量:5
4
作者 Wei-hua Li Jing-ping Shi +2 位作者 Yun-yan Wu Yue-ping Wang Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1006-1022,共17页
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur... Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat. 展开更多
关键词 unmanned combat aerial vehicle Cooperative occupation Beyond-visual-range air combat Weapon engagement zone Discrete particle swarm optimization Formation switching
下载PDF
Trajectory online optimization for unmanned combat aerial vehicle using combined strategy 被引量:1
5
作者 Kangsheng Dong Hanqiao Huang +1 位作者 Changqiang Huang Zhuoran Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期963-970,共8页
This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajec... This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments. 展开更多
关键词 unmanned combat aerial vehicle (ucav) trajectory online optimization functional representation parameter optimization rolling optimization differential evolution
下载PDF
Cooperative decision-making algorithm with efficient convergence for UCAV formation in beyond-visual-range air combat based on multi-agent reinforcement learning
6
作者 Yaoming ZHOU Fan YANG +2 位作者 Chaoyue ZHANG Shida LI Yongchao WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期311-328,共18页
Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance ... Highly intelligent Unmanned Combat Aerial Vehicle(UCAV)formation is expected to bring out strengths in Beyond-Visual-Range(BVR)air combat.Although Multi-Agent Reinforcement Learning(MARL)shows outstanding performance in cooperative decision-making,it is challenging for existing MARL algorithms to quickly converge to an optimal strategy for UCAV formation in BVR air combat where confrontation is complicated and reward is extremely sparse and delayed.Aiming to solve this problem,this paper proposes an Advantage Highlight Multi-Agent Proximal Policy Optimization(AHMAPPO)algorithm.First,at every step,the AHMAPPO records the degree to which the best formation exceeds the average of formations in parallel environments and carries out additional advantage sampling according to it.Then,the sampling result is introduced into the updating process of the actor network to improve its optimization efficiency.Finally,the simulation results reveal that compared with some state-of-the-art MARL algorithms,the AHMAPPO can obtain a more excellent strategy utilizing fewer sample episodes in the UCAV formation BVR air combat simulation environment built in this paper,which can reflect the critical features of BVR air combat.The AHMAPPO can significantly increase the convergence efficiency of the strategy for UCAV formation in BVR air combat,with a maximum increase of 81.5%relative to other algorithms. 展开更多
关键词 unmanned combat aerial vehicle(ucav)formation DECISION-MAKING Beyond-visual-range(BVR)air combat Advantage highlight Multi-agent reinforcement learning(MARL)
原文传递
Hybrid hierarchical trajectory planning for a fixed-wing UCAV performing air-to-surface multi-target attack 被引量:5
7
作者 Yu Zhang Jing Chen Lincheng Shen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第4期536-552,共17页
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu... This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes. 展开更多
关键词 hierarchical trajectory planning air-to-surface multi-target attack (A/SMTA) traveling salesman problem (TSP) proba-bilistic roadmap Gauss pseudospectral method unmanned com-bat aerial vehicle ucav).
下载PDF
UCAV situation assessment method based on C-LSHADE-Means and SAE-LVQ
8
作者 XIE Lei TANG Shangqin +2 位作者 WEI Zhenglei XUAN Yongbo WANG Xiaofei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1235-1251,共17页
The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low ac... The unmanned combat aerial vehicle(UCAV)is a research hot issue in the world,and the situation assessment is an important part of it.To overcome shortcomings of the existing situation assessment methods,such as low accuracy and strong dependence on prior knowledge,a datadriven situation assessment method is proposed.The clustering and classification are combined,the former is used to mine situational knowledge,and the latter is used to realize rapid assessment.Angle evaluation factor and distance evaluation factor are proposed to transform multi-dimensional air combat information into two-dimensional features.A convolution success-history based adaptive differential evolution with linear population size reduc-tion-means(C-LSHADE-Means)algorithm is proposed.The convolutional pooling layer is used to compress the size of data and preserve the distribution characteristics.The LSHADE algorithm is used to initialize the center of the mean clustering,which over-comes the defect of initialization sensitivity.Comparing experi-ment with the seven clustering algorithms is done on the UCI data set,through four clustering indexes,and it proves that the method proposed in this paper has better clustering performance.A situation assessment model based on stacked autoen-coder and learning vector quantization(SAE-LVQ)network is constructed,and it uses SAE to reconstruct air combat data fea-tures,and uses the self-competition layer of the LVQ to achieve efficient classification.Compared with the five kinds of assess-ments models,the SAE-LVQ model has the highest accuracy.Finally,three kinds of confrontation processes from air combat maneuvering instrumentation(ACMI)are selected,and the model in this paper is used for situation assessment.The assessment results are in line with the actual situation. 展开更多
关键词 unmanned combat aerial vehicle(ucav) situation assessment clustering K-MEANS stacked autoencoder learn-ing vector quantization
下载PDF
基于分组教与学的无人战斗机自适应路径规划
9
作者 唐天兵 陈永发 +1 位作者 蒙祖强 李继发 《火力与指挥控制》 CSCD 北大核心 2024年第4期18-23,共6页
针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距... 针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距离短、威胁小的任务路径。针对教与学算法寻优精度低、耗时长的问题,提出一种分组教与学算法,引入动态分组和高斯分布扰动策略,提高算法寻优性能。通过仿真实验,该方案求解的最优路径更短且安全。 展开更多
关键词 无人战斗机 路径规划 教与学算法 群体智能
下载PDF
基于整数规划的多UCAV任务分配问题研究 被引量:21
10
作者 叶媛媛 闵春平 +1 位作者 朱华勇 沈林成 《信息与控制》 CSCD 北大核心 2005年第5期548-552,共5页
在深入分析多UCAV任务分配问题的特点的基础上,提出了求解多UCAV协同任务分配的整数规划方法.通过设计决策变量和灵活地对各种约束条件形式化,建立了多UCAV任务分配问题的形式化模型.并以典型的UCAV任务SEAD为想定,进行了仿真验证与分析... 在深入分析多UCAV任务分配问题的特点的基础上,提出了求解多UCAV协同任务分配的整数规划方法.通过设计决策变量和灵活地对各种约束条件形式化,建立了多UCAV任务分配问题的形式化模型.并以典型的UCAV任务SEAD为想定,进行了仿真验证与分析.仿真结果表明该模型可以较好地解决多UCAV协同作战的任务分配问题.* 展开更多
关键词 ucav(无人作战飞机) 协同 任务分配 整数规划
下载PDF
基于威胁等效和改进PSO算法的UCAV实时航路规划方法 被引量:18
11
作者 唐上钦 黄长强 +1 位作者 胡杰 吴文超 《系统工程与电子技术》 EI CSCD 北大核心 2010年第8期1706-1710,共5页
为解决无人战斗机(unmanned combat aerial vehicle,UCAV)实时航路规划问题,通过对各种威胁等效为雷达威胁,威胁分级和每级分层次的处理方法,得到每个威胁的击毁和击伤作用距离。建立UCAV简易的二维模型,利用其飞行姿态与雷达散射截面积... 为解决无人战斗机(unmanned combat aerial vehicle,UCAV)实时航路规划问题,通过对各种威胁等效为雷达威胁,威胁分级和每级分层次的处理方法,得到每个威胁的击毁和击伤作用距离。建立UCAV简易的二维模型,利用其飞行姿态与雷达散射截面积(radar cross section,RCS)之间的关系,得出以探测概率为基础的威胁代价函数。最后运用自适应Meta-Lamarckian学习策略的粒子群优化(particle swarm optimization,PSO)算法对方法进行实时性仿真测试,结果表明此方法的有效性。 展开更多
关键词 无人战斗机 最优航路 威胁等效 动态雷达散射截面积 粒子群优化算法
下载PDF
利用Radau伪谱法求解UCAV对地攻击轨迹研究 被引量:8
12
作者 王铀 赵辉 +2 位作者 惠百斌 王锋 胡杰 《电光与控制》 北大核心 2012年第10期50-53,共4页
针对UCAV对地攻击轨迹规划问题,提出一种基于Radau伪谱法(RPM)的求解策略。首先,构建了最优控制问题的一般框架,分析了RPM求解最优控制问题的基本原理及实现方式;在充分考虑UCAV的气动力特性、发动机推力特性及大气环境特性的基础上建立... 针对UCAV对地攻击轨迹规划问题,提出一种基于Radau伪谱法(RPM)的求解策略。首先,构建了最优控制问题的一般框架,分析了RPM求解最优控制问题的基本原理及实现方式;在充分考虑UCAV的气动力特性、发动机推力特性及大气环境特性的基础上建立了UCAV三自由度(3-DOF)质点模型,并详细分析了UCAV初始和终端位置、速度、姿态约束、飞行性能和战场环境等约束条件,在此基础上构建UCAV对地攻击轨迹规划问题框架;最后,利用RPM将轨迹规划的最优控制问题转化为非线性规划问题并求得最优解。仿真结果表明,该方法能以较高的精度和速度生成满足各种复杂约束要求、连续并且真实可行的最优轨迹。 展开更多
关键词 无人作战飞机 轨迹规划 最优控制 Radau伪谱法
下载PDF
基于自适应伪谱法的UCAV低可探测攻击轨迹规划研究 被引量:12
13
作者 刘鹤鸣 丁达理 +2 位作者 黄长强 黄汉桥 王铀 《系统工程与电子技术》 EI CSCD 北大核心 2013年第1期78-84,共7页
研究无人作战飞机(unmanned combat aerial vehicle,UCAV)对地攻击阶段轨迹规划问题。首先,在综合UCAV的气动力特性、发动机推力特性基础上建立UCAV质点模型和动力学模型,并结合UCAV平台初始条件、机动性以及武器投射条件构建约束条件;... 研究无人作战飞机(unmanned combat aerial vehicle,UCAV)对地攻击阶段轨迹规划问题。首先,在综合UCAV的气动力特性、发动机推力特性基础上建立UCAV质点模型和动力学模型,并结合UCAV平台初始条件、机动性以及武器投射条件构建约束条件;针对当前轨迹规划中没有考虑雷达散射截面(radar cross section,RCS)随UCAV姿态角改变而动态变化这一缺陷,建立综合考虑动态RCS的威胁概率和攻击时间的目标函数;然后利用可变低阶自适应伪谱法求得攻击轨迹最优解。对时间最短、RCS固定和考虑动态RCS 3种情况进行仿真。结果表明,考虑动态RCS时,UCAV将根据威胁进行轨迹和姿态调整,极大减小了被敌方威胁捕获的概率。该算法能够提供规划轨迹的高精度状态和控制量信息,有利于实现攻击过程的高精度精细规划控制。 展开更多
关键词 动态雷达散射截面 无人作战飞机 轨迹规划 可变低阶自适应伪谱法
下载PDF
基于FBNs的有人机/UCAV编队对地攻击威胁评估 被引量:21
14
作者 刘跃峰 陈哨东 +1 位作者 赵振宇 张安 《系统工程与电子技术》 EI CSCD 北大核心 2012年第8期1635-1639,共5页
信息化环境下的编队对地攻击过程中,所获取的地面兵力威胁信息具有高度不确定性。如何采用高效的不确定性信息推理方法快速准确地完成地面兵力对空中飞行编队的威胁评估建模成为一个亟待解决的问题。提出基于模糊贝叶斯网络的有人机/无... 信息化环境下的编队对地攻击过程中,所获取的地面兵力威胁信息具有高度不确定性。如何采用高效的不确定性信息推理方法快速准确地完成地面兵力对空中飞行编队的威胁评估建模成为一个亟待解决的问题。提出基于模糊贝叶斯网络的有人机/无人战斗机编队对地威胁评估建模方法,综合模糊逻辑与贝叶斯网络的优势,对战场的随机、模糊威胁信息进行综合处理。仿真结果表明,模糊贝叶斯网络不仅能够有效处理战场不确定信息,而且能够综合指挥员的主观判断,适合于不确定性战场环境下的威胁评估推理。 展开更多
关键词 系统工程 威胁评估 模糊贝叶斯网络 有人机/无人战斗机编队 对地攻击
下载PDF
基于贝叶斯优化算法的UCAV编队对地攻击协同任务分配 被引量:8
15
作者 张安 史志富 +1 位作者 刘海燕 何艳萍 《电光与控制》 北大核心 2009年第1期1-5,共5页
针对UCAV编队对地攻击协同控制决策优化问题,首先构建了UCAV编队对地攻击任务分配的自主价值优势矩阵。在此基础上依据多人冲突理论分别对双方以及本机编队进行权重分配;建立了UCAV编队对地攻击协同任务分配的整体价值优势矩阵,由此根... 针对UCAV编队对地攻击协同控制决策优化问题,首先构建了UCAV编队对地攻击任务分配的自主价值优势矩阵。在此基础上依据多人冲突理论分别对双方以及本机编队进行权重分配;建立了UCAV编队对地攻击协同任务分配的整体价值优势矩阵,由此根据决策变量与约束条件构建了任务分配问题的数学模型。然后应用贝叶斯优化算法对该模型进行了优化分析。仿真实例表明,所建协同任务分配模型能够反映编队协同控制决策的重要性,而且应用贝叶斯优化算法能够很快收敛到全局最优解,能有效地解决UCAV编队对地攻击的协同任务分配问题。 展开更多
关键词 ucav编队 对地攻击 任务分配 贝叶斯优化算法
下载PDF
基于博弈论的多UCAV对地攻击目标分配 被引量:4
16
作者 唐传林 杜海文 +1 位作者 吴文超 翁兴伟 《电光与控制》 北大核心 2011年第10期28-31,共4页
针对多架UCAV对地攻击目标分配问题,首先根据价值属性分别对目标和飞机进行权重分配,在此基础上构建了多UCAV对地攻击目标分配的自主决策函数和协同决策函数,提出了一种基于博弈论的目标分配方法。然后运用该算法进行了实例仿真,仿真结... 针对多架UCAV对地攻击目标分配问题,首先根据价值属性分别对目标和飞机进行权重分配,在此基础上构建了多UCAV对地攻击目标分配的自主决策函数和协同决策函数,提出了一种基于博弈论的目标分配方法。然后运用该算法进行了实例仿真,仿真结果证明了该算法的可行性和有效性。 展开更多
关键词 无人作战飞机 对地攻击 目标分配 博弈论
下载PDF
多UCAV协同目标攻击决策 被引量:4
17
作者 宋磊 黄长强 +2 位作者 吴文超 李望西 轩永波 《系统工程与电子技术》 EI CSCD 北大核心 2011年第7期1548-1552,共5页
针对多无人作战飞机(unmanned combat aerial vehicle,UCAV)攻击多目标,研究了多UCAV协同攻击决策问题。建立了目标毁伤模型、UCAV损耗模型和时间协同模型,并通过加权求和将三者转化为单一目标函数,进而转化为单目标问题进行求解。提出... 针对多无人作战飞机(unmanned combat aerial vehicle,UCAV)攻击多目标,研究了多UCAV协同攻击决策问题。建立了目标毁伤模型、UCAV损耗模型和时间协同模型,并通过加权求和将三者转化为单一目标函数,进而转化为单目标问题进行求解。提出了一种离散微粒群优化(discrete particle swarm optimization,DPSO)算法,在微粒群优化算法框架内重新定义了微粒的位置、速度及相关操作。建立了微粒与实际问题的映射关系,进而使DPSO算法适合于求解多UCAV协同目标攻击决策问题。仿真结果表明,DPSO算法易于实现,能够较好地解决基于时间协同的多UCAV目标攻击决策问题。 展开更多
关键词 多无人作战飞机 目标攻击决策 离散微粒群优化 时间协同
下载PDF
基于影响图的UCAV编队对地攻击战术决策研究 被引量:5
18
作者 史志富 刘海燕 +1 位作者 张安 刘新学 《系统工程与电子技术》 EI CSCD 北大核心 2009年第1期130-133,共4页
随着武器的高科技化、战场环境的复杂化、战斗节奏的加快,智能化的战术决策系统在现代战争中占有越来越重要的地位。基于影响图易于进行不确定性推理的优点,提出应用影响图来建立UCAV编队对地攻击智能战术决策系统。建立了UCAV编队对地... 随着武器的高科技化、战场环境的复杂化、战斗节奏的加快,智能化的战术决策系统在现代战争中占有越来越重要的地位。基于影响图易于进行不确定性推理的优点,提出应用影响图来建立UCAV编队对地攻击智能战术决策系统。建立了UCAV编队对地攻击战术决策的影响图模型,并且对该模型进行了仿真分析。仿真结果表明,基于影响图的战术决策模型能够提高决策的准确度和智能化,而且推理简单,易于实现。 展开更多
关键词 战术决策 影响图 ucav编队 对地攻击
下载PDF
基于免疫粒子群算法的多UCAV协同任务分配 被引量:7
19
作者 有伟 王社伟 陶军 《计算机工程与应用》 CSCD 北大核心 2010年第32期224-227,235,共5页
任务分配问题是多UCAV协同控制的关键和有效保证。综合考虑问题的多规划指标和多类复杂约束条件,建立了基于多目标整数规划的协同多任务分配模型。通过模拟生物免疫系统的免疫特征和运行机制,并将粒子群优化作为算法的局部搜索算子,设... 任务分配问题是多UCAV协同控制的关键和有效保证。综合考虑问题的多规划指标和多类复杂约束条件,建立了基于多目标整数规划的协同多任务分配模型。通过模拟生物免疫系统的免疫特征和运行机制,并将粒子群优化作为算法的局部搜索算子,设计了一种适用于问题求解的免疫粒子群算法,使算法同时具有人工免疫算法种群多样性好、粒子群优化局部搜索能力和进化方向性强等特点。仿真实验表明该方法具有良好的优化效果和时间特性,可较好地解决多UCAV协同任务分配问题。 展开更多
关键词 无人作战飞机 协同控制 任务分配 免疫粒子群优化 人工免疫
下载PDF
复杂不确定环境下UCAV自主攻击轨迹优化设计 被引量:5
20
作者 黄长强 黄汉桥 +2 位作者 王铀 翁兴伟 刘鹤鸣 《西北工业大学学报》 EI CAS CSCD 北大核心 2013年第3期331-338,共8页
针对不确定环境下无人作战飞机(UCAV)自主攻击关键问题,提出一种滚动伪谱法求解最优攻击轨迹的策略。首先设计出UCAV自主攻击过程总体框架,随后建立了UCAV三自由度质点模型,基于动态RCS构建统一威胁模型,采用威胁等效的方法快速处理突... 针对不确定环境下无人作战飞机(UCAV)自主攻击关键问题,提出一种滚动伪谱法求解最优攻击轨迹的策略。首先设计出UCAV自主攻击过程总体框架,随后建立了UCAV三自由度质点模型,基于动态RCS构建统一威胁模型,采用威胁等效的方法快速处理突发威胁,以滚动优化策略解决大规模不确定环境下UCAV视野域范围有限、不易处理突发威胁以及因规划空间增大而产生的维数灾难等问题,以预测规划解决滚动方法带来的局部最优问题以及可能面临的有限时间内攻击轨迹解算困难而无解的问题。数字仿真结果表明,该算法能以较高的速度和精度在复杂不确定环境中快速规划出满足约束要求的最优对地攻击轨迹,且精度高、跟踪效果好,从而证明了该算法的有效性。 展开更多
关键词 无人作战飞机 自主攻击 不确定环境 伪谱法 滚动时域优化
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部