Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCA...Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.展开更多
This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajec...This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments.展开更多
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur...Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.展开更多
In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position beco...In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and h...Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.展开更多
为解决信息不完备条件下的无人作战飞机(UCAV,Unmanned Combat Air Vehicle)战术决策问题,提出一种基于灰色区间关联的UCAV自主战术决策方法.依照作战任务要求选取决策要素,建立UCAV决策推理的规则库.构建不完备信息模型,并基于灰色区...为解决信息不完备条件下的无人作战飞机(UCAV,Unmanned Combat Air Vehicle)战术决策问题,提出一种基于灰色区间关联的UCAV自主战术决策方法.依照作战任务要求选取决策要素,建立UCAV决策推理的规则库.构建不完备信息模型,并基于灰色区间关联理论给出UCAV战术决策模型;设计冲突消解算法,有效解决不完备信息导致的推理失效问题.仿真实例模拟了决策过程,验证了该方法在解决UCAV战术决策问题上的可行性和在化解规则匹配冲突方面的有效性.仿真结果表明,该方法能够应对决策要素不确定性较大的情况,并给出合理的战术行为推理结果.展开更多
基金supported by the National Natural Science Foundation of China(7147117571471174)
文摘Unmanned combat air vehicles(UCAVs) mission planning is a fairly complicated global optimum problem. Military attack missions often employ a fleet of UCAVs equipped with weapons to attack a set of known targets. A UCAV can carry different weapons to accomplish different combat missions. Choice of different weapons will have different effects on the final combat effectiveness. This work presents a mixed integer programming model for simultaneous weapon configuration and route planning of UCAVs, which solves the problem optimally using the IBM ILOG CPLEX optimizer for simple missions. This paper develops a heuristic algorithm to handle the medium-scale and large-scale problems. The experiments demonstrate the performance of the heuristic algorithm in solving the medium scale and large scale problems. Moreover, we give suggestions on how to select the most appropriate algorithm to solve different scale problems.
基金supported by the National Natural Science Foundation of China(61601505)the Aeronautical Science Foundation of China(20155196022)the Shaanxi Natural Science Foundation of China(2016JQ6050)
文摘This paper presents a combined strategy to solve the trajectory online optimization problem for unmanned combat aerial vehicle (UCAV). Firstly, as trajectory directly optimizing is quite time costing, an online trajectory functional representation method is proposed. Considering the practical requirement of online trajectory, the 4-order polynomial function is used to represent the trajectory, and which can be determined by two independent parameters with the trajectory terminal conditions; thus, the trajectory online optimization problem is converted into the optimization of the two parameters, which largely lowers the complexity of the optimization problem. Furthermore, the scopes of the two parameters have been assessed into small ranges using the golden section ratio method. Secondly, a multi-population rotation strategy differential evolution approach (MPRDE) is designed to optimize the two parameters; in which, 'current-to-best/1/bin', 'current-to-rand/1/bin' and 'rand/2/bin' strategies with fixed parameter settings are designed, these strategies are rotationally used by three subpopulations. Thirdly, the rolling optimization method is applied to model the online trajectory optimization process. Finally, simulation results demonstrate the efficiency and real-time calculation capability of the designed combined strategy for UCAV trajectory online optimizing under dynamic and complicated environments.
基金supported by National Natural Science Foundation of China(61425008,61333004,61273054)Top-Notch Young Talents Program of China,and Aeronautical Foundation of China(2013585104)
基金supported by the National Natural Science Foundation of China(No.61573286)the Aeronautical Science Foundation of China(No.20180753006)+2 种基金the Fundamental Research Funds for the Central Universities(3102019ZDHKY07)the Natural Science Foundation of Shaanxi Province(2020JQ-218)the Shaanxi Province Key Laboratory of Flight Control and Simulation Technology。
文摘Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat.
基金National Key R&D Program of China(Grant No.2021YFA1000402)National Natural Science Foundation of China(Grant No.72071159)to provide fund for conducting experiments。
文摘In the air combat process,confrontation position is the critical factor to determine the confrontation situation,attack effect and escape probability of UAVs.Therefore,selecting the optimal confrontation position becomes the primary goal of maneuver decision-making.By taking the position as the UAV’s maneuver strategy,this paper constructs the optimal confrontation position selecting games(OCPSGs)model.In the OCPSGs model,the payoff function of each UAV is defined by the difference between the comprehensive advantages of both sides,and the strategy space of each UAV at every step is defined by its accessible space determined by the maneuverability.Then we design the limit approximation of mixed strategy Nash equilibrium(LAMSNQ)algorithm,which provides a method to determine the optimal probability distribution of positions in the strategy space.In the simulation phase,we assume the motions on three directions are independent and the strategy space is a cuboid to simplify the model.Several simulations are performed to verify the feasibility,effectiveness and stability of the algorithm.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
基金supported by the National Natural Science Foundation of China(Grant Nos.60975072,60604009)the Aeronautical Science Foundation of China(Grant No.2008ZC01006)+2 种基金Beijing NOVA Program Foundation(Grant No.2007A017)the Fundamental Research Funds for the Central Universities(Grant No.YWF-10-01-A18)the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)
文摘Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.
文摘为解决信息不完备条件下的无人作战飞机(UCAV,Unmanned Combat Air Vehicle)战术决策问题,提出一种基于灰色区间关联的UCAV自主战术决策方法.依照作战任务要求选取决策要素,建立UCAV决策推理的规则库.构建不完备信息模型,并基于灰色区间关联理论给出UCAV战术决策模型;设计冲突消解算法,有效解决不完备信息导致的推理失效问题.仿真实例模拟了决策过程,验证了该方法在解决UCAV战术决策问题上的可行性和在化解规则匹配冲突方面的有效性.仿真结果表明,该方法能够应对决策要素不确定性较大的情况,并给出合理的战术行为推理结果.