The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving sy...The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone.展开更多
Although the development of machine intelligence is far from simulating all the cognitive competence of our brains, still it is absolutely possible to peel the driving activity from people's cognitive activities and ...Although the development of machine intelligence is far from simulating all the cognitive competence of our brains, still it is absolutely possible to peel the driving activity from people's cognitive activities and then make the machine finish some low-level, complicated and lasting driving cognition by simulating our brains. The goal of driving is to replace drivers and free them from boring driving activities. Based on some studies on unmanned driving, this paper summarizes and analyzes the background, significance, research status and key technology of unmanned driving and the research group also introduces some research on brain cognition of driving and sensor placement of intelligent vehicles, which offers more meaningful reference to push the study of unmanned driving.展开更多
With the advancement of the information age,the transportation industry has experienced rapid growth,leading to an expansion in the scale and number of highway constructions.However,this development has also given ris...With the advancement of the information age,the transportation industry has experienced rapid growth,leading to an expansion in the scale and number of highway constructions.However,this development has also given rise to numerous traffic issues,including frequent vehicle congestion and traffic accidents.To address these problems,it is essential to leverage modern technology for real-time information collection and analysis,providing robust technical support for intelligent transportation systems.This paper focuses on artificial intelligence(AI)technology,explaining its concept and its role in intelligent transportation.It reviews the various application areas and analyzes the use of AI in intelligent transportation.Finally,it proposes strategies for applying AI to promote the healthy development of intelligent transportation systems.展开更多
基金supported in part by the National Key RD Program of China (2021YFF0602104-2,2020YFB1804604)in part by the 2020 Industrial Internet Innovation and Development Project from Ministry of Industry and Information Technology of Chinain part by the Fundamental Research Fund for the Central Universities (30918012204,30920041112).
文摘The application of unmanned driving in the Internet of Things is one of the concrete manifestations of the application of artificial intelligence technology.Image semantic segmentation can help the unmanned driving system by achieving road accessibility analysis.Semantic segmentation is also a challenging technology for image understanding and scene parsing.We focused on the challenging task of real-time semantic segmentation in this paper.In this paper,we proposed a novel fast architecture for real-time semantic segmentation named DuFNet.Starting from the existing work of Bilateral Segmentation Network(BiSeNet),DuFNet proposes a novel Semantic Information Flow(SIF)structure for context information and a novel Fringe Information Flow(FIF)structure for spatial information.We also proposed two kinds of SIF with cascaded and paralleled structures,respectively.The SIF encodes the input stage by stage in the ResNet18 backbone and provides context information for the feature fusionmodule.Features from previous stages usually contain rich low-level details but high-level semantics for later stages.Themultiple convolutions embed in Parallel SIF aggregate the corresponding features among different stages and generate a powerful global context representation with less computational cost.The FIF consists of a pooling layer and an upsampling operator followed by projection convolution layer.The concise component provides more spatial details for the network.Compared with BiSeNet,our work achieved faster speed and comparable performance with 72.34%mIoU accuracy and 78 FPS on Cityscapes Dataset based on the ResNet18 backbone.
基金This work is supported by National Natural Science Foundation of China under Grant No. 61300006, No. 61305055, No. 61035004, No. 61273213, No. 61203366 and No. 90920305, and China National High-Tech Project (863) under grant No. 2015AA015401, and Chinese Academy of engineering consulting Project No. 2015-XY-42.
文摘Although the development of machine intelligence is far from simulating all the cognitive competence of our brains, still it is absolutely possible to peel the driving activity from people's cognitive activities and then make the machine finish some low-level, complicated and lasting driving cognition by simulating our brains. The goal of driving is to replace drivers and free them from boring driving activities. Based on some studies on unmanned driving, this paper summarizes and analyzes the background, significance, research status and key technology of unmanned driving and the research group also introduces some research on brain cognition of driving and sensor placement of intelligent vehicles, which offers more meaningful reference to push the study of unmanned driving.
文摘With the advancement of the information age,the transportation industry has experienced rapid growth,leading to an expansion in the scale and number of highway constructions.However,this development has also given rise to numerous traffic issues,including frequent vehicle congestion and traffic accidents.To address these problems,it is essential to leverage modern technology for real-time information collection and analysis,providing robust technical support for intelligent transportation systems.This paper focuses on artificial intelligence(AI)technology,explaining its concept and its role in intelligent transportation.It reviews the various application areas and analyzes the use of AI in intelligent transportation.Finally,it proposes strategies for applying AI to promote the healthy development of intelligent transportation systems.