The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
In this paper, we consider scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective functions are to minimize total machine load, total completion (waiting)...In this paper, we consider scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective functions are to minimize total machine load, total completion (waiting) time, total absolute differences in completion (waiting) times respectively. If the number of machines is fixed, these problems can be solved in time respectively, where m is the number of machines and n is the number of jobs.展开更多
The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production sch...The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.展开更多
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘In this paper, we consider scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective functions are to minimize total machine load, total completion (waiting) time, total absolute differences in completion (waiting) times respectively. If the number of machines is fixed, these problems can be solved in time respectively, where m is the number of machines and n is the number of jobs.
文摘The casting production process typically involves single jobs and small batches,with multiple constraints in the molding and smelting operations.To address the discrete optimization challenge of casting production scheduling,this paper presents a multi-objective batch scheduling model for molding and smelting operations on unrelated batch processing machines with incompatible job families and non-identical job sizes.The model aims to minimise the makespan,number of batches,and average vacancy rate of sandboxes.Based on the genetic algorithm,virus optimization algorithm,and two local search strategies,a hybrid algorithm(GA-VOA-BMS)has been designed to solve the model.The GA-VOA-BMS applies a novel Batch First Fit(BFF)heuristic for incompatible job families to improve the quality of the initial population,adopting the batch moving strategy and batch merging strategy to further enhance the quality of the solution and accelerate the convergence of the algorithm.The proposed algorithm was then compared with multi-objective swarm optimization algorithms,namely NSGA-ll,SPEA-l,and PESA-ll,to evaluate its effectiveness.The results of the performance comparison indicate that the proposed algorithm outperforms the others in terms of both qualityand stability.