The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi...The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB.展开更多
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am...As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.展开更多
There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem...There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem. Groundwater has become one of main resources of fresh water in the HRB. In this paper, temporal and spatial variations of groundwater in the HRB are estimated by the Gravity Recovery and Climate Experiment (GRACE) satellites. Our analysis shows that groundwater storage in the HRB reaches its highest in the summer of 2005, and then begins to decline in the following years and reaches steady status in 2008. Spatially, groundwater shows a decline in the upper HRB in the first two years and a slight increase in the following years, while this phenomenon is reversed in the middle HRB where groundwater slightly increases in 2005 and then declines in the following three years. In the lower HRB, GRACE detects a continual increase in the full six-year period. This approach is proven successful when employed in the HRB and thus offers a new insight into monitoring groundwater variations in a river basin with limited or even without any observed data.展开更多
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var...The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.展开更多
Variation of terrestrial water storage in the Hebei plain area from March 2010 to June 2014 was studied using ground gravimetry combined with vertical displacement data from the Global Navigation Satellite System.Resu...Variation of terrestrial water storage in the Hebei plain area from March 2010 to June 2014 was studied using ground gravimetry combined with vertical displacement data from the Global Navigation Satellite System.Results show that observed gravity variation in this area increased continuously,basically reflecting a trend toward land subsidence.With the effect of this subsidence removed,a dominantnegative change in gravity variation was evident,reflecting an average rate of decrease in terrestrial water in this area of 0.10±0.053 m/y,and this is equivalent to a volume of 81.5±43.2×108 m^(3)and is consistent with the spatial distribution of groundwater change from measured hydrologic data.These results can be an essential reference and supplement for the study of terrestrial water variation in the Hebei plain area,and indicate that ground surface gravimetry can be used as an important mean for studying changes in terrestrial water.展开更多
Continental water storage plays a major role in Earth's climate system.However,temporal and spatial variations of continental water are poorly known,particularly in Africa.Gravity Recovery and Climate Experiment(G...Continental water storage plays a major role in Earth's climate system.However,temporal and spatial variations of continental water are poorly known,particularly in Africa.Gravity Recovery and Climate Experiment(GRACE)satellite mission provides an opportunity to estimate terrestrial water storage(TWS)variations at both continental and river-basin scales.In this paper,seasonal and secular variations of TWS within Africa for the period from January 2003 to July 2013 are assessed using monthly GRACE coefficients from three processing centers(Centre for Space Research,the German Research Centre for Geo-sciences,and NASA's Jet Propulsion Laboratory).Monthly grids from Global Land Data Assimilation System(GLDAS)-I and from the Tropical Rainfall Measuring Mission(TRMM)-3B43 models are also used in order to understand the reasons of increasing or decreasing water storage.Results from GRACE processing centers show similar TWS estimates at seasonal timescales with some differences concerning inter-annual trend variations.The largest annual signals of GRACE TWS are observed in Zambezi and Okavango River basins and in Volta River Basin.An increasing trend of 11.60 mm/a is found in Zambezi River Basin and of 9 mm/a in Volta River Basin.A phase shift is found between rainfall and GRACE TWS GRACE TWS is preceded by rainfall by 2-3 months in parts of south central Africa.Comparing GLDAS rainfall with TRMM model,it is found that GLDAS has a dry bias from TRMM model.展开更多
The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest...The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE (Gravity Recovery and Climate Experiment) satellites, precipitation prod- ucts and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the follow- ing conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002-2004. It then returned to a higher level in 2005-2006 and featured lower levels in 2007-009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists stud- ying the mechanisms that influence changes in water storage in Central Asia.展开更多
As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS...As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.展开更多
An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on De- cember 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epi- center (96 km...An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on De- cember 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epi- center (96 km) were analyzed, and it was found that the continuous gravity observation data obtained in this rainy season did not exhibit a characteristic of seasonal change in gravity identical to that in the past years, and thereafter the M5.1 Badong earthquake occurred. Numerical simulation revealed that the water storage and discharge of the Three Gorges reservoir generated seasonal change in gravity, and the changes in atmospheric pressure and gravity load were not the main sources of the seasonal change of continuous gravity observation data whether in respect of magnitude or phase and did not have obvious breaking change on annual variation before the earthquake. Through analysis of the seasonal change data observed on the same site including cavern temperature, rainfall data and global terrestrial water model (CPC) simulated water load, it was thought that, in the observation room with cavern temperature change of only -0.1 l^C/a at Yichang seismostation, the sea- sonal change of continuous gravity observation result mainly originated from the seasonal change in rainfall. In the case that the changes in rainfall and its water load did not have evident breaking change on annual varia- tion law before the earthquake, if the MS. 1 Badong earthquake was the cause of the breaking change on annual variation law in Yichang this time, then it was believed through analysis of crust expansion ratio that similar a- nomaly should occur at a crust expansion and compression intersection, no more than 100 km away from the epicenter.展开更多
The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on varia...The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL.展开更多
Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthog...Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthogonal Function(EOF) analysis. Results of the second seasonal EOF mode show the influence of the Meiyu season. Annual variability is clearly shown in the precipitation distribution over China, and two new patterns of interannual variability are presented for the first time from observations, where two periods of abrupt acceleration are seen in 2004 and 2008. GRACE successfully measures drought events in southern China, and in this respect, an association with the Arctic Oscillation and El Nino-Southern Oscillation is discussed. This study demonstrates the unique potential of satellite gravity measurements in monitoring TWS variations and large-scale severe drought in China.展开更多
US-Germany co-sponsered satellite gravimetry mission GRACE (Gravity Recovery And Climate Experiment), launched in March 2002, has been producing monthly time series of Earth gravity models up to degree and order of 12...US-Germany co-sponsered satellite gravimetry mission GRACE (Gravity Recovery And Climate Experiment), launched in March 2002, has been producing monthly time series of Earth gravity models up to degree and order of 120. The GRACE mission consists of two identical satellites flying on an almost polar orbit with an altitude of about 300-500 km and satelite-to-satellite ranging of about 220 km. Thanks to the payloads of space-borne GPS receivers, accelerometers and high-precision K-band satelite-to-satellite ranging mesurements, GRACE gravity models are expected to achieve more than one order of magnitude of improvement over previous models at spatial scales of a few hundred kilometers or larger. Recovery of surface mass re-distribution based on GRACE’s time-varying gravity models is applied to studies in solid Earth geophysics, oceanography, climatology and geodesy. At secular time scales, GRACE is expected to provide valuable information on global ice changes, whose variations have profound influences on global climate, and in particular, on sea level changes. At seasonal time scales, GRACE is expected to reveal surface water changes with an ac- curacy of less than 1 cm, or ocean bottom pressure changes with an accuracy of less than 1 mbar (1 mbar =102 Pa). These surface mass redistribution measurements would impove our understanding of the global and regional mass and energy cycles that are critical to human life. Using 15 GRACE monthly gravity models covering the period from April 2002 to December 2003, this study compares seasonal water storage changes recovered from GRACE data and hydrology models at global and regional scales, with particular focus on the Yangtze River basin of China. Annual amplitude of 3.4 cm of equivalent water height change is found for the Yangtze River basin with maximum in Spring and Autumn, agreeing with two state-of-the-art hydrology models. The differences between GRACE re- sults and model predictions are less than 1-2 cm. We conclude that satellite gravimetry has huge potentials in monitering water storage changes in large river basins such as Yangtze.展开更多
Global warming has altered the thermodynamic and dynamic environments of the climate system, thus affecting the energy budget and water cycle process of the land-atmosphere system. Under changes in key hydrological el...Global warming has altered the thermodynamic and dynamic environments of the climate system, thus affecting the energy budget and water cycle process of the land-atmosphere system. Under changes in key hydrological elements such as precipitation, runoff, and terrestrial water storage, future drought variation remains a complex question. Existing studies have utilized terrestrial water storage anomaly(TWSA) in drought monitoring and assessment, but they usually focused on either drought duration or intensity, overlooking the multi-faced attributes of droughts as well as their socioeconomic impacts under a non-stationary condition. In this study, we first identify dry/wet conditions over China using GRACE/GRACE-FO satellite observations, and then evaluate the feedback effects of humidity and energy factors(e.g., sensible heat flux, latent heat flux,atmospheric relative humidity, and convective available potential energy) to drought events. Future changes in TWSA and dry/wet conditions are projected by eight Coupled Model Inter-comparison Project Phase 6(CMIP6) global climate models(GCMs)under three shared socioeconomic pathways(SSPs), with their biases corrected by a trend-preserving quantile mapping method.The time-varying Copula function of drought duration and intensity is constructed by a moving windows method, and future bivariate drought risks are quantified with the most likely realization method. The population and GDP affected by increasing drought risks are finally quantified based on the SSPs data. It is found that the land-atmosphere coupling effects closely interact with drought evolution, and the uneven distribution of water resources is projected to be further aggravated, with most areas of China will be threatened by continuous drying tendency. By the end of the century, the duration of moderate, severe and exceptional droughts in some regions of China will double, and the drought intensity will increase by over 80%. For the 50-year bivariate droughts during the historical period, their occurrence may increase by 5–10 times in several regions, and might affect about 35–55% of China’s population and GDP at the end of 21st century.展开更多
针对重力恢复与气候试验(Gravity Recovery and Climate Experiment,GRACE)和其后继卫星(GRACE Follow-on,GRACE-FO)之间存在约1年的观测间断问题,利用降水和温度数据对陆地水储量间断期数据进行重构。以中国大陆区域陆地水储量异常(Ter...针对重力恢复与气候试验(Gravity Recovery and Climate Experiment,GRACE)和其后继卫星(GRACE Follow-on,GRACE-FO)之间存在约1年的观测间断问题,利用降水和温度数据对陆地水储量间断期数据进行重构。以中国大陆区域陆地水储量异常(Terrestrial Water Storage Anomaly,TWSA)研究为例,采用时间序列分析法补充数据间断,并对重构效果进行评价。结果表明,基于降水数据的重构方法可较好地补充中国大陆区域的TWSA,各流域间断期前后重构序列和原序列相关系数均超过0.8,在相对湿润的长江流域和珠江流域重构效果较好。展开更多
基金funded by the Key Research Project of Higher Education Institutions in Henan Province (20B480004)the Scientific and Technological Project of Henan Province (222102320258)+2 种基金NSFCs (Grant Nos. 41904012 and 41974022)China Postdoctoral Science Foundation (2020T130482,2018M630879)the Fundamental Research Funds for Central Universities (2042020kf0008)
文摘The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB.
基金supported by National Natural Science Foundation of China(Grant Nos.41431070,41174016,41274026,41274024,41321063)National Key Basic Research Program of China(973 Program,2012CB957703)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)The Chinese Academy of Sciences
文摘As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.
基金supported by NSFC/China (No. 91125006)IAM grant (No. IAM201215)partially by State Key Laboratory funding (No. SKLFSE201009)
文摘There are only limited surface water resources available in the Heihe River Basin (HRB), a typical inland river basin in the arid region of northwestern China, where groundwater overexploitation is a serious problem. Groundwater has become one of main resources of fresh water in the HRB. In this paper, temporal and spatial variations of groundwater in the HRB are estimated by the Gravity Recovery and Climate Experiment (GRACE) satellites. Our analysis shows that groundwater storage in the HRB reaches its highest in the summer of 2005, and then begins to decline in the following years and reaches steady status in 2008. Spatially, groundwater shows a decline in the upper HRB in the first two years and a slight increase in the following years, while this phenomenon is reversed in the middle HRB where groundwater slightly increases in 2005 and then declines in the following three years. In the lower HRB, GRACE detects a continual increase in the full six-year period. This approach is proven successful when employed in the HRB and thus offers a new insight into monitoring groundwater variations in a river basin with limited or even without any observed data.
基金supported by the National Natural Science Foundation of China(NSFC)Projects(11173050 and 11373059)
文摘The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.
基金supported by the Director Foundation of Institute of Seismology,China Earthquake Administration(Grant Nos:IS201726121)the National Natural Science Foundation of China(Grant Nos:41304059)the special earthquake research grant offered by China Earthquake Administration(Grant Nos:201308009,201508009)。
文摘Variation of terrestrial water storage in the Hebei plain area from March 2010 to June 2014 was studied using ground gravimetry combined with vertical displacement data from the Global Navigation Satellite System.Results show that observed gravity variation in this area increased continuously,basically reflecting a trend toward land subsidence.With the effect of this subsidence removed,a dominantnegative change in gravity variation was evident,reflecting an average rate of decrease in terrestrial water in this area of 0.10±0.053 m/y,and this is equivalent to a volume of 81.5±43.2×108 m^(3)and is consistent with the spatial distribution of groundwater change from measured hydrologic data.These results can be an essential reference and supplement for the study of terrestrial water variation in the Hebei plain area,and indicate that ground surface gravimetry can be used as an important mean for studying changes in terrestrial water.
基金supported by the Main Direction Project of Chinese Academy of Sciences(KJCX2-EW-T03)Shanghai Science and Technology Commission Project(12DZ2273300)National Natural Science Foundation of China(NSFC)Project(11173050 and 11373059)
文摘Continental water storage plays a major role in Earth's climate system.However,temporal and spatial variations of continental water are poorly known,particularly in Africa.Gravity Recovery and Climate Experiment(GRACE)satellite mission provides an opportunity to estimate terrestrial water storage(TWS)variations at both continental and river-basin scales.In this paper,seasonal and secular variations of TWS within Africa for the period from January 2003 to July 2013 are assessed using monthly GRACE coefficients from three processing centers(Centre for Space Research,the German Research Centre for Geo-sciences,and NASA's Jet Propulsion Laboratory).Monthly grids from Global Land Data Assimilation System(GLDAS)-I and from the Tropical Rainfall Measuring Mission(TRMM)-3B43 models are also used in order to understand the reasons of increasing or decreasing water storage.Results from GRACE processing centers show similar TWS estimates at seasonal timescales with some differences concerning inter-annual trend variations.The largest annual signals of GRACE TWS are observed in Zambezi and Okavango River basins and in Volta River Basin.An increasing trend of 11.60 mm/a is found in Zambezi River Basin and of 9 mm/a in Volta River Basin.A phase shift is found between rainfall and GRACE TWS GRACE TWS is preceded by rainfall by 2-3 months in parts of south central Africa.Comparing GLDAS rainfall with TRMM model,it is found that GLDAS has a dry bias from TRMM model.
基金Under the auspices of National Natural Science Foundation of China(No.41371419)Key Program for International Science and Technique Cooperation Projects of China(No.2010DFA92720-04)
文摘The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE (Gravity Recovery and Climate Experiment) satellites, precipitation prod- ucts and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the follow- ing conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002-2004. It then returned to a higher level in 2005-2006 and featured lower levels in 2007-009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists stud- ying the mechanisms that influence changes in water storage in Central Asia.
基金funded by the National 973 Project China (2013CB733302)National Natural Science Foundation of China (41504014, 41474019)
文摘As critical component of hydrologic cycle, basin discharge is a key issue for understanding the hydrological and climatologic related to water and energy cycles. Combining GRACE gravity field models with ET from GLDAS models and precipitation from GPCP, discharge of the Yellow River basin are estimated from the water balance equation. While comparing the results with discharge from GLDAS model and in situ measurements, the results reveal that discharge from Mosaic and CLM GLDAS model can partially represent the river discharge and the discharge estimation from water balance equation could reflect the discharge from precipitation over the Yellow River basin.
基金supported by the Director Foundation of Institute of Seismology,China Earthquake Administration(IS201156069,IS201326123)the National Natural Science Foundation of China(41204058)
文摘An M5.1 earthquake occurred in Badong County, only 66 km from the Three Gorges Dam, on De- cember 16, 2013. The continuous gravity observation data obtained at Yichang seismostation nearest to the epi- center (96 km) were analyzed, and it was found that the continuous gravity observation data obtained in this rainy season did not exhibit a characteristic of seasonal change in gravity identical to that in the past years, and thereafter the M5.1 Badong earthquake occurred. Numerical simulation revealed that the water storage and discharge of the Three Gorges reservoir generated seasonal change in gravity, and the changes in atmospheric pressure and gravity load were not the main sources of the seasonal change of continuous gravity observation data whether in respect of magnitude or phase and did not have obvious breaking change on annual variation before the earthquake. Through analysis of the seasonal change data observed on the same site including cavern temperature, rainfall data and global terrestrial water model (CPC) simulated water load, it was thought that, in the observation room with cavern temperature change of only -0.1 l^C/a at Yichang seismostation, the sea- sonal change of continuous gravity observation result mainly originated from the seasonal change in rainfall. In the case that the changes in rainfall and its water load did not have evident breaking change on annual varia- tion law before the earthquake, if the MS. 1 Badong earthquake was the cause of the breaking change on annual variation law in Yichang this time, then it was believed through analysis of crust expansion ratio that similar a- nomaly should occur at a crust expansion and compression intersection, no more than 100 km away from the epicenter.
基金funded by the Major National Scientific Research Plan(2013CB733305,2012CB957703)the National Natural Science Foundation of China(41174066,41131067,41374087,41431070)
文摘The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL.
基金supported by China National Science Funds(41474064,41504066)
文摘Mass variations in terrestrial water storage(TWS) obtained from eight years of satellite data from the Gravity Recovery and Climate Experiment(GRACE) are used to describe low frequency TWS through Empirical Orthogonal Function(EOF) analysis. Results of the second seasonal EOF mode show the influence of the Meiyu season. Annual variability is clearly shown in the precipitation distribution over China, and two new patterns of interannual variability are presented for the first time from observations, where two periods of abrupt acceleration are seen in 2004 and 2008. GRACE successfully measures drought events in southern China, and in this respect, an association with the Arctic Oscillation and El Nino-Southern Oscillation is discussed. This study demonstrates the unique potential of satellite gravity measurements in monitoring TWS variations and large-scale severe drought in China.
基金supported by the National Natural Science Foundation of China(Grant No.40374002)Key Programs of Knowledge Innovation Project of Chinese Academy of Sciences(Grant No.KJCX2-SW-T1)+1 种基金supported by NASA Solid Earth and Natural Hazards and GRACE Science Program(NNG04GF10G,NNG04G060G)supported by the National Natural Science Foundation of China(Grant No.10273018).
文摘US-Germany co-sponsered satellite gravimetry mission GRACE (Gravity Recovery And Climate Experiment), launched in March 2002, has been producing monthly time series of Earth gravity models up to degree and order of 120. The GRACE mission consists of two identical satellites flying on an almost polar orbit with an altitude of about 300-500 km and satelite-to-satellite ranging of about 220 km. Thanks to the payloads of space-borne GPS receivers, accelerometers and high-precision K-band satelite-to-satellite ranging mesurements, GRACE gravity models are expected to achieve more than one order of magnitude of improvement over previous models at spatial scales of a few hundred kilometers or larger. Recovery of surface mass re-distribution based on GRACE’s time-varying gravity models is applied to studies in solid Earth geophysics, oceanography, climatology and geodesy. At secular time scales, GRACE is expected to provide valuable information on global ice changes, whose variations have profound influences on global climate, and in particular, on sea level changes. At seasonal time scales, GRACE is expected to reveal surface water changes with an ac- curacy of less than 1 cm, or ocean bottom pressure changes with an accuracy of less than 1 mbar (1 mbar =102 Pa). These surface mass redistribution measurements would impove our understanding of the global and regional mass and energy cycles that are critical to human life. Using 15 GRACE monthly gravity models covering the period from April 2002 to December 2003, this study compares seasonal water storage changes recovered from GRACE data and hydrology models at global and regional scales, with particular focus on the Yangtze River basin of China. Annual amplitude of 3.4 cm of equivalent water height change is found for the Yangtze River basin with maximum in Spring and Autumn, agreeing with two state-of-the-art hydrology models. The differences between GRACE re- sults and model predictions are less than 1-2 cm. We conclude that satellite gravimetry has huge potentials in monitering water storage changes in large river basins such as Yangtze.
基金supported by the National Natural Science Foundation of China (Grant No. 52009091)the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1221)。
文摘Global warming has altered the thermodynamic and dynamic environments of the climate system, thus affecting the energy budget and water cycle process of the land-atmosphere system. Under changes in key hydrological elements such as precipitation, runoff, and terrestrial water storage, future drought variation remains a complex question. Existing studies have utilized terrestrial water storage anomaly(TWSA) in drought monitoring and assessment, but they usually focused on either drought duration or intensity, overlooking the multi-faced attributes of droughts as well as their socioeconomic impacts under a non-stationary condition. In this study, we first identify dry/wet conditions over China using GRACE/GRACE-FO satellite observations, and then evaluate the feedback effects of humidity and energy factors(e.g., sensible heat flux, latent heat flux,atmospheric relative humidity, and convective available potential energy) to drought events. Future changes in TWSA and dry/wet conditions are projected by eight Coupled Model Inter-comparison Project Phase 6(CMIP6) global climate models(GCMs)under three shared socioeconomic pathways(SSPs), with their biases corrected by a trend-preserving quantile mapping method.The time-varying Copula function of drought duration and intensity is constructed by a moving windows method, and future bivariate drought risks are quantified with the most likely realization method. The population and GDP affected by increasing drought risks are finally quantified based on the SSPs data. It is found that the land-atmosphere coupling effects closely interact with drought evolution, and the uneven distribution of water resources is projected to be further aggravated, with most areas of China will be threatened by continuous drying tendency. By the end of the century, the duration of moderate, severe and exceptional droughts in some regions of China will double, and the drought intensity will increase by over 80%. For the 50-year bivariate droughts during the historical period, their occurrence may increase by 5–10 times in several regions, and might affect about 35–55% of China’s population and GDP at the end of 21st century.
文摘针对重力恢复与气候试验(Gravity Recovery and Climate Experiment,GRACE)和其后继卫星(GRACE Follow-on,GRACE-FO)之间存在约1年的观测间断问题,利用降水和温度数据对陆地水储量间断期数据进行重构。以中国大陆区域陆地水储量异常(Terrestrial Water Storage Anomaly,TWSA)研究为例,采用时间序列分析法补充数据间断,并对重构效果进行评价。结果表明,基于降水数据的重构方法可较好地补充中国大陆区域的TWSA,各流域间断期前后重构序列和原序列相关系数均超过0.8,在相对湿润的长江流域和珠江流域重构效果较好。