Acrylate modified polyurethane resin was first synthesized, and interpenetrated with unsaturated polyester resin to form IPNs and gradient IPNs which cured at room temperature. The polymerization process was traced by...Acrylate modified polyurethane resin was first synthesized, and interpenetrated with unsaturated polyester resin to form IPNs and gradient IPNs which cured at room temperature. The polymerization process was traced by an IR spectroscopy technique and the simultaneous interpenetrating techniques were determined. The morphology of these IPNs were estimated by TMA and TEM methods. The results indicated that large amount of interpenetrating and entanglement make T g linked up effectively, and domains between two phases can be in nanometre ranges, which changed with composition ratios. The mechanical properties results showed that IPNs varied from elastomeric to plastic materials. It was noteworthy that, with the introduction of modified groups and the formation of graft construction in IPNs, the miscibility in the systems was improved a lot. These further led to the improved mechanical properties of IPNs with elastomer reinforced and plasticizer toughened as well. The reinforced miscibility between the networks can apparently change mechanical property especially for the gradient ones when the materials are elongated.展开更多
The nano-TiO2/unsaturated polyester resin (referred to as nano-TiO2/UPR hereafter) was prepared with the 'reaction method', by which a chemical bond generated between nano-TiO2 and UP was inserted in the UP lo...The nano-TiO2/unsaturated polyester resin (referred to as nano-TiO2/UPR hereafter) was prepared with the 'reaction method', by which a chemical bond generated between nano-TiO2 and UP was inserted in the UP long chain. The performance of the nano-TiO2/UPR was determined by such a new structure. The research results showed that the reactivity of nano-TiO2/UPR is higher than that of UPR. The impact strength and bending strength of nano-TiO2/UPR are greatly enhanced as compared with that of UPR. Thermal resistance and dielectric property of nano-TiO2/UPR are the same as that of UPR.展开更多
The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize th...The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process.展开更多
文摘Acrylate modified polyurethane resin was first synthesized, and interpenetrated with unsaturated polyester resin to form IPNs and gradient IPNs which cured at room temperature. The polymerization process was traced by an IR spectroscopy technique and the simultaneous interpenetrating techniques were determined. The morphology of these IPNs were estimated by TMA and TEM methods. The results indicated that large amount of interpenetrating and entanglement make T g linked up effectively, and domains between two phases can be in nanometre ranges, which changed with composition ratios. The mechanical properties results showed that IPNs varied from elastomeric to plastic materials. It was noteworthy that, with the introduction of modified groups and the formation of graft construction in IPNs, the miscibility in the systems was improved a lot. These further led to the improved mechanical properties of IPNs with elastomer reinforced and plasticizer toughened as well. The reinforced miscibility between the networks can apparently change mechanical property especially for the gradient ones when the materials are elongated.
文摘The nano-TiO2/unsaturated polyester resin (referred to as nano-TiO2/UPR hereafter) was prepared with the 'reaction method', by which a chemical bond generated between nano-TiO2 and UP was inserted in the UP long chain. The performance of the nano-TiO2/UPR was determined by such a new structure. The research results showed that the reactivity of nano-TiO2/UPR is higher than that of UPR. The impact strength and bending strength of nano-TiO2/UPR are greatly enhanced as compared with that of UPR. Thermal resistance and dielectric property of nano-TiO2/UPR are the same as that of UPR.
文摘The water collector is operated in the humid and hot environment of the cooling tower all the year round.It also needs to carry part of the weight of water and silt.Therefore,it is particularly critical to optimize the material of the water collector and improve its mechanical properties.Polyester,a general term of polymer obtained from polyols and polyacids,is a kind of engineering plastics with excellent properties and wide applications.Glass fiber is a reinforced plastic reinforcement material,and the biggest characteristic of it is the high tensile strength and good heat resistance.In this paper,glass fiber reinforced polyester resin composite material is prepared,its tensile properties and bending properties are tested,and the performance of the imported material JK2020B is compared and analyzed.The results show that the elastic modulus along the fiber direction is relatively high,but the interlayer force in the direction of thickness and width is very small.This review provides a guidance for production process.