Large-scale secondary motions are known to occur in turbulent flows over surfaces with spanwise roughness heterogeneity.Numerical studies often use adjacent high-and low-roughness longitudinal strips to investigate th...Large-scale secondary motions are known to occur in turbulent flows over surfaces with spanwise roughness heterogeneity.Numerical studies often use adjacent high-and low-roughness longitudinal strips to investigate these secondary rolls in boundary layers without any thermal stratification.In the present study,the effect of unstable thermal stratification on secondary rolls in a very high-Reynolds-number turbulent flow with spanwise-heterogeneous roughness is investigated by means of large-eddy simulation.The strength of the unstable stratification is systematically changed from L/h=−20 to L/h=−1,where L and h are Monin-Obukhov length and boundary-layer height,respectively.This range covers the transition from neutral stratification to unstable stratification.The results show that the positive buoyancy associated with the unstable thermal stratification acts against the roughness-induced secondary rolls.In the case of unstable stratification,secondary rolls are completely canceled out by buoyancy and replaced by new stronger convection-induced rolls rotating in opposite directions.展开更多
A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Z...A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55°E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
This paper focuses on boundary stabilization of a one-dimensional wave equation with an unstable boundary condition,in which observations are subject to arbitrary fixed time delay.The observability inequality indicate...This paper focuses on boundary stabilization of a one-dimensional wave equation with an unstable boundary condition,in which observations are subject to arbitrary fixed time delay.The observability inequality indicates that the open-loop system is observable,based on which the observer and predictor are designed:The state of system is estimated with available observation and then predicted without observation.After that equivalently the authors transform the original system to the well-posed and exponentially stable system by backstepping method.The equivalent system together with the design of observer and predictor give the estimated output feedback.It is shown that the closed-loop system is exponentially stable.Numerical simulations are presented to illustrate the effect of the stabilizing controller.展开更多
基金P.F.thanks the Aarhus University Research Foundation(AUFF)for the financial support.M.A.acknowledges the financial support from the Aarhus University Centre for Digitalisation,Big Data and Data Analytics(DIGIT).
文摘Large-scale secondary motions are known to occur in turbulent flows over surfaces with spanwise roughness heterogeneity.Numerical studies often use adjacent high-and low-roughness longitudinal strips to investigate these secondary rolls in boundary layers without any thermal stratification.In the present study,the effect of unstable thermal stratification on secondary rolls in a very high-Reynolds-number turbulent flow with spanwise-heterogeneous roughness is investigated by means of large-eddy simulation.The strength of the unstable stratification is systematically changed from L/h=−20 to L/h=−1,where L and h are Monin-Obukhov length and boundary-layer height,respectively.This range covers the transition from neutral stratification to unstable stratification.The results show that the positive buoyancy associated with the unstable thermal stratification acts against the roughness-induced secondary rolls.In the case of unstable stratification,secondary rolls are completely canceled out by buoyancy and replaced by new stronger convection-induced rolls rotating in opposite directions.
文摘A structural analysis was undertaken in the South Iceland Seismic Zone (SISZ) transform zone, and in the Hreppar Microplate (HMP) located between the propagating Eastern Rift Zone (ERZ) and the receding Western Rift Zone (WRZ). The age of the oceanic crust in these areas is 3.4 Ma to present. About 20,000 fracture segments on aerial images reflect the dominance of NNE extensional structures in the WRZ. Around 9,000 basement faults, intrusions, secondary fractures, surface ruptures of earthquakes, and leakages were mapped in the outcrops of the HMP and the SISZ. About 23% of these fractures strike NNE, while 77% are dominantly northerly dextral and ENE sinistral, and secondarily E-W, WNW and NW sinistral strike- and oblique-slip structures, forming a Riedel shear pattern typical of a transform zone. Dyke injections into Riedel shears indicate a leaky transform zone. Fractures reactivated, accumulated slip, and re-opened for fluid flow. The ENE faults dip mostly to the southeast and could be the present boundary of the SISZ to the north. A 10 - 30 km wide ENE structural zone hosts a valley to the east, which could be deeper in the west. This ENE zone contains all the earthquakes, dominant ENE rivers, frequent ENE secondary fractures, and is likely the active part of the SISZ. The HMP does not show rotation since 3.4 Ma despite being between two rift segments. Future propagation/recession of the rift segments along their N55°E sections would cause a migration and a clockwise rotation of the SISZ from ENE to E-W. The boundary faults of the SISZ would then be E-W, with unchanged internal Riedel shears, compensating its sinistral motion. Insights into complexities of diverging plate boundaries are critical for resource management in such tectonic contexts.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金supported by the National Natural Science Foundation of China under Grant No.61203058the Training Program for Outstanding Young Teachers of North China University of Technology under Grant No.XN131+1 种基金the Construction Plan for Innovative Research Team of North China University of Technology under Grant No.XN129the Laboratory construction for Mathematics Network Teaching Platform of North China University of Technology under Grant No.XN041
文摘This paper focuses on boundary stabilization of a one-dimensional wave equation with an unstable boundary condition,in which observations are subject to arbitrary fixed time delay.The observability inequality indicates that the open-loop system is observable,based on which the observer and predictor are designed:The state of system is estimated with available observation and then predicted without observation.After that equivalently the authors transform the original system to the well-posed and exponentially stable system by backstepping method.The equivalent system together with the design of observer and predictor give the estimated output feedback.It is shown that the closed-loop system is exponentially stable.Numerical simulations are presented to illustrate the effect of the stabilizing controller.