期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stability of coal pillar in gob-side entry driving under unstable overlying strata and its coupling support control technique 被引量:11
1
作者 Yuan Zhang Zhijun Wan +4 位作者 Fuchen Li Changbing Zhou Bo Zhang Feng Guo Chengtan Zhu 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期204-210,共7页
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to... Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar. 展开更多
关键词 Gob-side entry driving unstable surrounding rock Coal pillar stability Surrounding rock control Coupling support
下载PDF
Analysis on Fracture Mechanics of Unstable Rock 被引量:2
2
作者 Siqi Chen Hongkai Chen +2 位作者 Ming Yang Tao Chen Kexuan Guo 《World Journal of Engineering and Technology》 2016年第3期69-75,共7页
Unstable rock is a kind of global geological disaster with high frequency. This paper, considering three kinds of combined loads which are gravity, fracture water pressure and seismic force, constructs a unstable rock... Unstable rock is a kind of global geological disaster with high frequency. This paper, considering three kinds of combined loads which are gravity, fracture water pressure and seismic force, constructs a unstable rock mechanics model and it uses a fracture mechanics method to deduce the composite stress intensity factor of the type I - II. Based on the maximum circumferential stress theory, this article calculates the theo-retical fracture angle by triangle universal formula. 展开更多
关键词 Fracture Mechanics Composite Stress Intensity Factor Fracture Angle unstable Rock
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部