期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of transpiration on unsteady MHD flow of an upper convected Maxwell (UCM) fluid passing through a stretching surface in the presence of a first order chemical reaction 被引量:1
1
作者 Swati Mukhopadhyay M.Golam Arif M.Wazed Ali Pk 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期315-322,共8页
The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constru... The aim of this article is to present the effects of transpiration on the unsteady two-dimensional boundary layer flow of non-Newtonian fluid passing through a stretching sheet in the presence of a first order constructive/destructive chemical reaction. The upper-convected Maxwell (UCM) model is used here to characterize the non-Newtonian behavior of the fluid. Using similarity solutions, the governing nonlinear partial differential equations are transformed into ordinary ones and are then solved numerically by the shooting method. The flow fields and mass transfer are significantly influenced by the governing parameters. The fluid velocity initially decreases as the unsteadiness parameter increases and the concentration decreases significantly due to the increase in the unsteadiness. The effect of increasing values of transpiration (suction) and the Maxwell parameter is to suppress the velocity field; however, the concentration is enhanced as transpiration (suction) and the Maxwell parameter increase. Also, it is found that the fluid velocity decreases as the magnetic parameter increases; however, the concentration increases in this case. 展开更多
关键词 unsteady flow mhd upper convected Maxwell fluid stretching surface transpiration chemical reaction
下载PDF
DTM-BF method and dual solutions for unsteady MHD flow over permeable shrinking sheet with velocity slip
2
作者 苏晓红 郑连存 张欣欣 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第12期1555-1568,共14页
An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity s... An unsteady magnetohydrodynamic (MHD) boundary layer flow over a shrinking permeable sheet embedded in a moving viscous electrically conducting fluid is investigated both analytically and numerically. The velocity slip at the solid surface is taken into account in the boundary conditions. A novel analytical method named DTM- BF is proposed and used to get the approximate analytical solutions to the nonlinear governing equation along with the boundary conditions at infinity. All analytical results are compared with those obtained by a numerical method. The comparison shows good agreement, which validates the accuracy of the DTM-BF method. Moreover, the existence ranges of the dual solutions and the unique solution for various parameters are obtained. The effects of the velocity slip parameter, the unsteadiness parameter, the magnetic parameter, the suction/injection parameter, and the velocity ratio parameter on the skin friction, the unique velocity, and the dual velocity profiles are explored, respectively. 展开更多
关键词 unsteady magnetohydrodynamic mhd flow shrinking sheet analyticalsolution slip condition dual solutions
下载PDF
Entropy analysis of unsteady magneto-nanofluid flow past accelerating stretching sheet with convective boundary condition 被引量:1
3
作者 S.DAS S.CHAKRABORTY +1 位作者 R.N.JANA O.D.MAKINDE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第12期1593-1610,共18页
The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse m... The unsteady laminar magnetohydrodynamics (MHD) boundary layer flow and heat transfer of nanofluids over an accelerating convectively heated stretching sheet are numerically studied in the presence of a transverse magnetic field with heat source/sink The unsteady governing equations are solved by a shooting method with the Runge-Kutta- Fehlberg scheme. Three different types of water based nanofluids, containing copper, aluminium oxide, and titanium dioxide, are taken into consideration. The effects of the pertinent parameters on the fluid velocity, the temperature, the entropy generation num- ber, the Bejan number, the shear stress, and the heat transfer rate at the sheet surface are graphically and quantitatively discussed in detail. A comparison of the entropy generation due to the heat transfer and the fluid friction is made with the help of the Bejan number. It is observed that the presence of the metallic nanoparticles creates more entropy in the nanofluid flow than in the regular fluid flow. 展开更多
关键词 unsteady mhd flow NANOFLUID heat source/sink entropy generation Bejan number
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部