In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due...In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability展开更多
Modern fighters are designed to fly at high angle of attacks reaching 90 deg as part of their routine maneuvers.These maneuvers generate complex nonlinear and unsteady aerodynamic loading.In this study,different aerod...Modern fighters are designed to fly at high angle of attacks reaching 90 deg as part of their routine maneuvers.These maneuvers generate complex nonlinear and unsteady aerodynamic loading.In this study,different aerodynamic prediction tools are investigated to achieve a model which is highly accurate,less computational,and provides a stable prediction of associated unsteady aerodynamics that results from high angle of attack maneuvers.These prediction tools include Artificial Neural Networks(ANN)model,Adaptive Neuro Fuzzy Logic Inference System(ANFIS),Fourier model,and Polynomial Classifier Networks(PCN).Themain aim of the predictionmodel is to estimate the pitch moment and the normal force data obtained from forced tests of unsteady delta-winged aircrafts performing high angles of attack maneuvers.The investigation includes three delta wing models with 1,1.5,and 2 aspect ratios with four determined variables:change rate in angle of attack(0 to 90 deg),non-dimensional pitch rate(0 to.06),and angle of attack.Following a comprehensive analysis of the proposed identification methods,it was found that the newly proposed model of PCN showed the least error in modeling and prediction results.Based on prediction capabilities,it is seen that polynomial networks modeling outperformed ANFIS and ANN for the present nonlinear problem.展开更多
The main equations for computing the unsteady aerodynamics of the aircraft undergoing the travelling gust are derived.Research and simulation on a specific example aircraft are performed,the results indicate that the ...The main equations for computing the unsteady aerodynamics of the aircraft undergoing the travelling gust are derived.Research and simulation on a specific example aircraft are performed,the results indicate that the modeling technique of the aircraft unsteady aerodynamics is correct,and it can meet the requirements due to the head⁃on and tail⁃on travelling gusts.展开更多
An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamic...An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamics appears when flight vehicles are in a transonic state or confronted with unstable airflow.Meanwhile,actuator failures and multisource model uncertainties are introduced.However,the boundaries of these multisource uncertainties are assumed unknown.The target is assumed to execute high maneuver movement which is unknown to the missile.Furthermore,impact angle constraint puts forward higher requirements for the interception accuracy of the integrated guidance and control(IGC)method.The impact angle constraint and the precise interception are established as the object of the IGC method.Then,the boundaries of the lumped disturbances are estimated,and several fuzzy logic systems are introduced to compensate the unknown nonlinearities and uncertainties.Next,a series of adaptive laws are developed so that the undesirable effects arising from unsteady aerodynamics,actuator failures and unknown uncertainties could be suppressed.Consequently,an impact angle constrained fuzzy adaptive fault tolerant IGC method with three loops is constructed and a perfect hit-to-kill interception with specified impact angle can be implemented.Eventually,the numerical simulations are conducted to verify the effectiveness and superiority of the proposed method.展开更多
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ...Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.展开更多
A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method i...A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.展开更多
The aerodynamics of freely falling objects is one of the most interesting flow mechanics problems.In a recent study,Andersen,Pesavento,and Wang[J.Fluid Mech.,vol.541,pp.65-90(2005)]presented the quantitative compariso...The aerodynamics of freely falling objects is one of the most interesting flow mechanics problems.In a recent study,Andersen,Pesavento,and Wang[J.Fluid Mech.,vol.541,pp.65-90(2005)]presented the quantitative comparison between the experimental measurement and numerical computation.The rich dynamical behavior,such as fluttering and tumbling motion,was analyzed.However,obvious discrepancies between the experimental measurement and numerical simulations still exist.In the current study,a similar numerical computation will be conducted using a newly developed unified coordinate gas-kinetic method[J.Comput.Phys,vol.222,pp.155-175(2007)].In order to clarify some early conclusions,both elliptic and rectangular falling plates will be studied.Under the experimental condition,the numerical solution shows that the averaged translational velocity for both rectangular and elliptical plates are almost identical during the tumbling motion.However,the plate rotation depends strongly on the shape of the plates.In this study,the details of fluid forces and torques on the plates and plates movement trajectories will be presented and compared with the experimental measurements.展开更多
Aerodynamic forces and power requirements in forward flight in a bumblebee (Bombus terrestris) were studied using the method of computational fluid dynamics. Actual wing kinematic data of free flight were used in th...Aerodynamic forces and power requirements in forward flight in a bumblebee (Bombus terrestris) were studied using the method of computational fluid dynamics. Actual wing kinematic data of free flight were used in the study (the speed ranges from 0 m/s to 4.5 m/s; advance ratio ranges from 0-0.66). The bumblebee employs the delayed stall mechanism and the fast pitching-up rotation mechanism to produce vertical force and thrust. The leading-edge vortex does not shed in the translatory phase of the half-strokes and is much more concentrated than that of the fruit fly in a previous study. At hovering and low-speed flight, the vertical force is produced by both the half-strokes and is contributed by wing lift; at medium and high speeds, the vertical force is mainly produced during the downstroke and is contributed by both wing lift and wing drag. At all speeds the thrust is mainly produced in the upstroke and is contributed by wing drag. The power requirement at low to medium speeds is not very different from that of hovering and is relatively large at the highest speed (advance ratio 0.66), i.e. the power curve is Jshaped. Except at the highest flight speed, storing energy elastically can save power up to 20%-30%. At the highest speed, because of the large increase of aerodynamic torque and the slight decrease of inertial torque (due to the smaller stroke amplitude and stroke frequency used), the power requirement is dominated by aerodynamic power and the effect of elastic storage of energy on power requirement is limited.展开更多
Unsteady aerodynamic characteristics of a seagull wing in level flight are investigated using a boundary element method.A new no-penetration boundary condition is imposed on the surface of the wing by considering its ...Unsteady aerodynamic characteristics of a seagull wing in level flight are investigated using a boundary element method.A new no-penetration boundary condition is imposed on the surface of the wing by considering its deformation.The geometry and kinematics of the seagull wing are reproduced using the functions and data in the previously published literature.The proposed method is validated by comparing the computed results with the published data in the literature.The unsteady aerodynamics characteristics of the seagull wing are investigated by changing flapping frequency and advance ratio.It is found that the peak values of aerodynamic coefficients increase with the flapping frequency.The thrust and drag generations are complicated functions of frequency and wing stroke motions.The lift is inversely proportional to the advance ratio.The effects of several flapping modes on the lift and induced drag(or thrust)generation are also investigated.Among three single modes(flapping, folding and lead & lag),flapping generates the largest lift and can produce thrust alone.For three combined modes,both flapping/folding and flapping/lead & lag can produce lift and thrust larger than the flapping-alone mode can.Folding is shown to increase thrust when combined with flapping,whereas lead & lag has an effect of increasing the lift when also combined with flapping.When three modes are combined together,the bird can obtain the largest lift among the investigated modes.Even though the proposed method is limited to the inviscid flow assumption,it is believed that this method can be used to the design of flapping micro aerial vehicle.展开更多
Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flappi...Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flapping wing are not much affected by considerable twist, but affected by camber deformation. The effect of combined camber and twist deformation is similar to that of camber deformation. With a deformation of 6% camber and 20% twist (typical values observed for wings of many insects), lift is increased by 10% - 20% and lift-to-drag ratio by around 10% compared with the case of a rigid fiat-plate wing. As a result, the deformation can increase the maximum lift coefficient of an insect, and reduce its power requirement for flight. For example, for a hovering bumblebee with dynamically deforming wings (6% camber and 20% twist), aerodynamic power required is reduced by about 16% compared with the case of rigid wings.展开更多
The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is p...The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.展开更多
Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-be...Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-bending in the spanwise direction,wing-cambering in the chordwise direction, and wing area-changing. A plate of aspect ratio 3 is used to model a bat wing, and a three-dimensional unsteady panel method is used to predict the aerodynamic forces. It is found that the cambering model has great positive influence on the lift, followed by the area-changing model and then the bending model. Further study indicates that the vortex control is a main mechanism to produce high aerodynamic forces. The mechanisms of aerodynamic force enhancement are asymmetry of the cambered wing and amplification effects of wing area-changing and wing bending. Lift and thrust are generated mainly during downstroke, and they are almost negligible during upstroke by the integrated morphing model-wing.展开更多
In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal ...In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal of this study is to gain a better understanding and to find the possible ways for enhancing the aerodynamic efficients. The experimental investigations are carried out in two low-speed wind tunnels. The test models are two dimensional airfoils with different section geometries. Four means of excitations have been used in these experiments. (1) The pitch oscillation of the airfoil high-angle-of-attack situation. (2) The moving surface effects of the airfoil with a leading edge rotating cylinder. (3) Oscillating leading edge flaperon. (4) Small oscillating spoiler located near the leading edge of the airfoil. The lift, drag and pitch moment coefficients are measured in these experiments. But, we will put the emphasis only on the 'dynamic amplifying effects' on aerodynamic lift in this paper. Results obtained indicate that the beneficial aerodynamic effects of section lift increase can be obtained at the high angle of attack near stall regime, as long as the frequency and amplitute of the excitation are appropriately selected.展开更多
Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA00...Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.展开更多
The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 ...The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.展开更多
Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. Th...Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.展开更多
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and...The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.展开更多
We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic ana...We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.展开更多
Why the stall of an airfoil can be significantly delayed by its pitching-up motion? Various attempts have been proposed to answer this question over the past half century, but none is satisfactory. In this letter we ...Why the stall of an airfoil can be significantly delayed by its pitching-up motion? Various attempts have been proposed to answer this question over the past half century, but none is satisfactory. In this letter we prove that a chain of vorticity-dynamics processes at accelerating boundary is fully responsible for the causal mechanism underlying this peculiar phenomenon. The local flow behavior is explained by a simple potential-flow model.展开更多
文摘In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6- component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynam- ics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability
文摘Modern fighters are designed to fly at high angle of attacks reaching 90 deg as part of their routine maneuvers.These maneuvers generate complex nonlinear and unsteady aerodynamic loading.In this study,different aerodynamic prediction tools are investigated to achieve a model which is highly accurate,less computational,and provides a stable prediction of associated unsteady aerodynamics that results from high angle of attack maneuvers.These prediction tools include Artificial Neural Networks(ANN)model,Adaptive Neuro Fuzzy Logic Inference System(ANFIS),Fourier model,and Polynomial Classifier Networks(PCN).Themain aim of the predictionmodel is to estimate the pitch moment and the normal force data obtained from forced tests of unsteady delta-winged aircrafts performing high angles of attack maneuvers.The investigation includes three delta wing models with 1,1.5,and 2 aspect ratios with four determined variables:change rate in angle of attack(0 to 90 deg),non-dimensional pitch rate(0 to.06),and angle of attack.Following a comprehensive analysis of the proposed identification methods,it was found that the newly proposed model of PCN showed the least error in modeling and prediction results.Based on prediction capabilities,it is seen that polynomial networks modeling outperformed ANFIS and ANN for the present nonlinear problem.
文摘The main equations for computing the unsteady aerodynamics of the aircraft undergoing the travelling gust are derived.Research and simulation on a specific example aircraft are performed,the results indicate that the modeling technique of the aircraft unsteady aerodynamics is correct,and it can meet the requirements due to the head⁃on and tail⁃on travelling gusts.
基金supported by the National Natural Science Foundation of China(62003264).
文摘An impact angle constrained fuzzy adaptive fault tolerant integrated guidance and control method for Ski-to-Turn(STT)missiles subject to unsteady aerodynamics and multiple disturbances is proposed.Unsteady aerodynamics appears when flight vehicles are in a transonic state or confronted with unstable airflow.Meanwhile,actuator failures and multisource model uncertainties are introduced.However,the boundaries of these multisource uncertainties are assumed unknown.The target is assumed to execute high maneuver movement which is unknown to the missile.Furthermore,impact angle constraint puts forward higher requirements for the interception accuracy of the integrated guidance and control(IGC)method.The impact angle constraint and the precise interception are established as the object of the IGC method.Then,the boundaries of the lumped disturbances are estimated,and several fuzzy logic systems are introduced to compensate the unknown nonlinearities and uncertainties.Next,a series of adaptive laws are developed so that the undesirable effects arising from unsteady aerodynamics,actuator failures and unknown uncertainties could be suppressed.Consequently,an impact angle constrained fuzzy adaptive fault tolerant IGC method with three loops is constructed and a perfect hit-to-kill interception with specified impact angle can be implemented.Eventually,the numerical simulations are conducted to verify the effectiveness and superiority of the proposed method.
基金supported in part by the National Natural Science Foundation of China (No. 12202363)。
文摘Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.
文摘A full-span free-wake method is coupled with an unsteady panel method to accurately predict the unsteady aerodynamics of helicopter rotor blades in hover and forward flight. The unsteady potential-based panel method is used to consider aerodynamics of finite thickness multi-bladed rotors, and the full-span free-wake method is applied to simulating dynamics of rotor wake. These methods are tightly coupled through trailing-edge Kutta condition and by converting doublet-wake panels to full-span vortex filaments. A velocity-field integration technique is also adopted to overcome singularity problem during the interaction between the rotor wake and blades. Helicopter rotors including Caradonna–Tung, UH-60A, and AH-1G rotors, are simulated in hover and forward flight to validate the accuracy of this approach. The predicted aerodynamic loads of rotor blades agree well with available measured data and computational fluid dynamics (CFD) results, and the unsteady dynamics of rotor wake is also well simulated. Compared to CFD, the present method obtains accurate results more efficiently and is suitable to rotorcraft aeroelastic analysis.
基金the Research Grants Council of the Hong Kong Special Administrative region,China(Project No.HKUST6210/05E and 6214/06E).
文摘The aerodynamics of freely falling objects is one of the most interesting flow mechanics problems.In a recent study,Andersen,Pesavento,and Wang[J.Fluid Mech.,vol.541,pp.65-90(2005)]presented the quantitative comparison between the experimental measurement and numerical computation.The rich dynamical behavior,such as fluttering and tumbling motion,was analyzed.However,obvious discrepancies between the experimental measurement and numerical simulations still exist.In the current study,a similar numerical computation will be conducted using a newly developed unified coordinate gas-kinetic method[J.Comput.Phys,vol.222,pp.155-175(2007)].In order to clarify some early conclusions,both elliptic and rectangular falling plates will be studied.Under the experimental condition,the numerical solution shows that the averaged translational velocity for both rectangular and elliptical plates are almost identical during the tumbling motion.However,the plate rotation depends strongly on the shape of the plates.In this study,the details of fluid forces and torques on the plates and plates movement trajectories will be presented and compared with the experimental measurements.
基金The project supported by the National Natural Science Foundation of China(10232010)the National Aeronautic Science fund of China(03A51049)
文摘Aerodynamic forces and power requirements in forward flight in a bumblebee (Bombus terrestris) were studied using the method of computational fluid dynamics. Actual wing kinematic data of free flight were used in the study (the speed ranges from 0 m/s to 4.5 m/s; advance ratio ranges from 0-0.66). The bumblebee employs the delayed stall mechanism and the fast pitching-up rotation mechanism to produce vertical force and thrust. The leading-edge vortex does not shed in the translatory phase of the half-strokes and is much more concentrated than that of the fruit fly in a previous study. At hovering and low-speed flight, the vertical force is produced by both the half-strokes and is contributed by wing lift; at medium and high speeds, the vertical force is mainly produced during the downstroke and is contributed by both wing lift and wing drag. At all speeds the thrust is mainly produced in the upstroke and is contributed by wing drag. The power requirement at low to medium speeds is not very different from that of hovering and is relatively large at the highest speed (advance ratio 0.66), i.e. the power curve is Jshaped. Except at the highest flight speed, storing energy elastically can save power up to 20%-30%. At the highest speed, because of the large increase of aerodynamic torque and the slight decrease of inertial torque (due to the smaller stroke amplitude and stroke frequency used), the power requirement is dominated by aerodynamic power and the effect of elastic storage of energy on power requirement is limited.
基金supported by a grant from the Academic Research Program of Chungju National University,2006supported by the Korea Research Foundation Grant funded by the korean Govemment through the Ministry of Education and Human Resources Development,Basic Research Promotion Fund(KRF-2007-331-D00081)
文摘Unsteady aerodynamic characteristics of a seagull wing in level flight are investigated using a boundary element method.A new no-penetration boundary condition is imposed on the surface of the wing by considering its deformation.The geometry and kinematics of the seagull wing are reproduced using the functions and data in the previously published literature.The proposed method is validated by comparing the computed results with the published data in the literature.The unsteady aerodynamics characteristics of the seagull wing are investigated by changing flapping frequency and advance ratio.It is found that the peak values of aerodynamic coefficients increase with the flapping frequency.The thrust and drag generations are complicated functions of frequency and wing stroke motions.The lift is inversely proportional to the advance ratio.The effects of several flapping modes on the lift and induced drag(or thrust)generation are also investigated.Among three single modes(flapping, folding and lead & lag),flapping generates the largest lift and can produce thrust alone.For three combined modes,both flapping/folding and flapping/lead & lag can produce lift and thrust larger than the flapping-alone mode can.Folding is shown to increase thrust when combined with flapping,whereas lead & lag has an effect of increasing the lift when also combined with flapping.When three modes are combined together,the bird can obtain the largest lift among the investigated modes.Even though the proposed method is limited to the inviscid flow assumption,it is believed that this method can be used to the design of flapping micro aerial vehicle.
基金Project supported by the"Fan Zhou"Youth Science Fund of Beijing University of Aeronautics and Astronautics (No.20070404)
文摘Effects of unsteady deformation of a'flapping model insect wing on its aerodynamic force production are studied by solving the Navier-Stokes equations on a dynamically deforming grid. Aerodynamic forces on the flapping wing are not much affected by considerable twist, but affected by camber deformation. The effect of combined camber and twist deformation is similar to that of camber deformation. With a deformation of 6% camber and 20% twist (typical values observed for wings of many insects), lift is increased by 10% - 20% and lift-to-drag ratio by around 10% compared with the case of a rigid fiat-plate wing. As a result, the deformation can increase the maximum lift coefficient of an insect, and reduce its power requirement for flight. For example, for a hovering bumblebee with dynamically deforming wings (6% camber and 20% twist), aerodynamic power required is reduced by about 16% compared with the case of rigid wings.
基金supported by the National Natural Science Foundation of China (No. 90716011)
文摘The characteristics and mechanism of unsteady aerodynamic heating of a transient hypersonic boundary layer caused by a sudden change in surface temperature are studied. The complete time history of wall heat flux is presented with both analytical and numerical approaches. With the analytical method, the unsteady compressible boundary layer equation is solved. In the neighborhood of the initial and final steady states, the transient responses can be expressed with a steady-state solution plus a perturbation series. By combining these two solutions, a complete solution in the entire time domain is achieved. In the region in which the analytical approach is applicable, numerical results are in good agreement with the analytical results, showing reliability of the methods. The result shows two distinct features of the unsteady response. In a short period just after a sudden increase in the wall temperature, the direction of the wall heat flux is reverted, and a new inflexion near the wall occurs in the profile of the thermal boundary layer. This is a typical unsteady characteristic. However, these unsteady responses only exist in a very short period in hypersonic flows, meaning that, in a long-term aerodynamic heating process considering only unsteady surface temperature, the unsteady characteristics of the flow can be ignored, and the traditional quasi-steady aerodynamic heating prediction methods are still valid.
基金Project supported by the National Natural Science Foundation of China(No.10602061)
文摘Large active wing deformation is a significant way to generate high aerodynamic forces required in bat's flapping flight. Besides the twisting, elementary morphing models of a bat wing are proposed, including wing-bending in the spanwise direction,wing-cambering in the chordwise direction, and wing area-changing. A plate of aspect ratio 3 is used to model a bat wing, and a three-dimensional unsteady panel method is used to predict the aerodynamic forces. It is found that the cambering model has great positive influence on the lift, followed by the area-changing model and then the bending model. Further study indicates that the vortex control is a main mechanism to produce high aerodynamic forces. The mechanisms of aerodynamic force enhancement are asymmetry of the cambered wing and amplification effects of wing area-changing and wing bending. Lift and thrust are generated mainly during downstroke, and they are almost negligible during upstroke by the integrated morphing model-wing.
文摘In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal of this study is to gain a better understanding and to find the possible ways for enhancing the aerodynamic efficients. The experimental investigations are carried out in two low-speed wind tunnels. The test models are two dimensional airfoils with different section geometries. Four means of excitations have been used in these experiments. (1) The pitch oscillation of the airfoil high-angle-of-attack situation. (2) The moving surface effects of the airfoil with a leading edge rotating cylinder. (3) Oscillating leading edge flaperon. (4) Small oscillating spoiler located near the leading edge of the airfoil. The lift, drag and pitch moment coefficients are measured in these experiments. But, we will put the emphasis only on the 'dynamic amplifying effects' on aerodynamic lift in this paper. Results obtained indicate that the beneficial aerodynamic effects of section lift increase can be obtained at the high angle of attack near stall regime, as long as the frequency and amplitute of the excitation are appropriately selected.
基金supported by National Natural Science Foundation of China(No.21276036)Liaoning Provincial Natural Science Foundation of China(No.2015020123)the Fundamental Research Funds for the Central Universities of China(No.3132015154)
文摘Unsteady dielectric barrier discharge(DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil.The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0.It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles,indicating a better flow control performance.By comparing the lift coefficients and the threshold voltages,an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle.The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle.
基金The project supported by the National Natural Science Foundation of China(10232010 and 10472008)Ph.D.Student Foundation of Chinese Ministry of Education(20030006022)
文摘The effects of corrugation and wing planform (shape and aspect ratio) on the aerodynamic force production of model insect wings in sweeping (rotating after an initial start) motion at Reynolds number 200 and 3500 at angle of attack 40℃ are investigated, using the method of computational fluid dynamics. A representative wing corrugation is considered. Wing-shape and aspect ratio (AR) of ten representative insect wings are considered; they are the wings of fruit fly, cranefly, dronefly, hoverfly, ladybird, bumblebee, honeybee, lacewing (forewing), hawkmoth and dragon- fly (forewing), respectively (AR of these wings varies greatly, from 2.84 to 5.45). The following facts are shown. (1) The corrugated and flat-plate wings produce approximately the same aerodynamic forces. This is because for a sweeping wing at large angle of attack, the length scale of the corrugation is much smaller than the size of the separated flow region or the size of the leading edge vortex (LEV). (2) The variation in wing shape can have considerable effects on the aerodynamic force; but it has only minor effects on the force coefficients when the velocity at r2 (the radius of the second :moment of wing area) is used as the reference velocity; i.e. the force coefficients are almost unaffected by the variation in wing shape. (3) The effects of AR are remarkably small: whenAR increases from 2.8 to 5.5, the force coefficients vary only slightly; flowfield results show that when AR is relatively large, the part of the LEV on the outer part of the wings sheds during the sweeping motion. As AR is increased, on one hand, the force coefficients will be increased due to the reduction of 3-dimensional flow effects; on the other hand, they will be decreased due to the shedding of part of the LEV; these two effects approximately cancel each other, resulting in only minor change of the force coefficients.
文摘Dynamic yaw stability derivatives of a gull bird are determined using Computational Fluid Dynamics(CFD) method. Two kinds of motions are applied for calculating the dynamic yaw stability derivatives CNr and CNβ. The first one relates to a lateral translation and, separately, to a yaw rotation. The second one consists of a combined translational and rotational motion. To determine dynamic yaw stability derivatives, the simulation of an unsteady flow with a bird model showing a harmonic motion is performed. The flow solution for each time step is obtained by solving unsteady Euler equations based on a finite volume approach for a small reduced frequency. Then, an evaluation of unsteady forces and moments for one cycle is conducted using harmonic Fourier analysis. The results of the dynamic yaw stability derivatives for both simulations of the model show a good agreement.
基金The project supported by the National Natural Science Foundation of China(10232010)the National Aeronautic Science Fund of China(03A51049)
文摘The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing “impinges” on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.
文摘We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.
基金supported by the National Natural Science Foundation of China(10921202,11221062,11521091,and 11472016)
文摘Why the stall of an airfoil can be significantly delayed by its pitching-up motion? Various attempts have been proposed to answer this question over the past half century, but none is satisfactory. In this letter we prove that a chain of vorticity-dynamics processes at accelerating boundary is fully responsible for the causal mechanism underlying this peculiar phenomenon. The local flow behavior is explained by a simple potential-flow model.