期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic Calibration of the Cutting Temperature Sensor of NiCr/NiSi Thin-film Thermocouple 被引量:16
1
作者 CUI Yunxian YANG Deshun +2 位作者 JIA Ying ZENG Qiyong SUN Baoyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期73-77,共5页
In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring... In high-speed cutting, natural thermocouple, artificial thermocouple and infrared radiation temperature measurement are usually adopted for measuring cutting temperature, but these methods have difficulty in measuring transient temperature accurately of cutting area on account of low response speed and limited cutting condition. In this paper, NiCr/NiSi thin-film thermocouples(TFTCs) are fabricated according to temperature characteristic of cutting area in high-speed cutting by means of advanced twinned microwave electro cyclotron resonance(MW-ECR) plasma source enhanced radio frequency(RF) reaction non-balance magnetron sputtering technique, and can be used for transient cutting temperature measurement. The time constants of the TFTCs with different thermo-junction film width are measured at four kinds of sampling frequency by using Ultra-CFR short pulsed laser system that established. One-dimensional unsteady heat conduction model is constructed and the dynamic performance is analyzed theoretically. It can be seen from the analysis results that the NiCr/NiSi TFTCs are suitable for measuring transient temperature which varies quickly, the response speed of TFTCs can be obviously improved by reducing the thickness of thin-film, and the area of thermo-junction has little influence on dynamic response time. The dynamic calibration experiments are made on the constructed dynamic calibration system, and the experimental results confirm that sampling frequency should be larger than 50 kHz in dynamic measurement for stable response time, and the shortest response time is 0.042 ms. Measurement methods and devices of cutting heat and cutting temperature measurement are developed and improved by this research, which provide practical methods and instruments in monitoring cutting heat and cutting temperature for research and production in high-speed machining. 展开更多
关键词 thin-film thermocouple cutting temperature sensor dynamic calibration one-dimensional unsteady heat conduction response time
下载PDF
A machine learning-assisted multifunctional tactile sensor for smart prosthetics
2
作者 Yue Li Lin Yang +7 位作者 Shihao Deng Hong Huang Yingyi Wang Zuoping Xiong Simin Feng Shuqi Wang Tie Li Ting Zhang 《InfoMat》 SCIE CSCD 2023年第9期78-89,共12页
The absence of tactile perception limits the dexterity of a prosthetic hand and its acceptance by amputees.Recreating the sensing properties of the skin using a flexible tactile sensor could have profound implications... The absence of tactile perception limits the dexterity of a prosthetic hand and its acceptance by amputees.Recreating the sensing properties of the skin using a flexible tactile sensor could have profound implications for prosthetics,whereas existing tactile sensors often have limited functionality with cross-interference.In this study,we propose a machine-learning-assisted multifunctional tactile sensor for smart prosthetics,providing a human-like tactile sensing approach for amputations.This flexible sensor is based on a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)-melamine sponge,which enables the detection of force and temperature with low cross-coupling owing to two separate sensing mechanisms:the open-circuit voltage of the sensor as a force-insensitive intrinsic variable to measure the absolute temperature and the resistance as a temperature-insensitive extrinsic variable to measure force.Furthermore,by analyzing the unsteady heat conduction and characterizing it using real-time thermal imaging,we demonstrated that the process of open-circuit voltage variation resulting from the unsteady heat conduction is closely correlated with the heatconducting capabilities of materials,which can be utilized to discriminate between substances.Assisted by the decision tree algorithm,the device is endowed with thermal conductivity sensing ability,which allows it to identify 10 types of substances with an accuracy of 94.7%.Furthermore,an individual wearing an advanced myoelectric prosthesis equipped with the above sensor can sense pressure,temperature,and recognize different materials.We demonstrated that our multifunctional tactile sensor provides a new strategy to help amputees feel force,temperature and identify the material of objects without the aid of vision. 展开更多
关键词 machine learning material classification multifunctional tactile sensor smart prosthetics unsteady heat conduction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部