Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ...Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.展开更多
Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial...Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.展开更多
We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatio...We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution.展开更多
The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-...The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-tion(DMD).The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system.Thereafter,DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching.First-order zero frequency mode is selected to accelerate the pseudo-time marching of unsteady adjoint equations in every real-time step.Through flow past a stationary circular cylinder and an unsteady aerodynamic shape optimization example,the efficiency of solving unsteady adjoint equations is significantly improved.Re-sults show that one hundred adjoint vectors contains enough information about the pseudo-time dynamics,and the adjoint dominant mode can be precisely predicted only by five snapshots produced from the adjoint vectors,which indicates DMD analysis for pseudo-time marching of unsteady adjoint equations is efficient.展开更多
This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip veloci...This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip velocity, thermal radiation conditions, and heat flux. The investigation is conducted employing a robust numerical method that accounts for the impact of thermal radiation. This category of fluid is apt for characterizing the movement of blood within an industrial artery, where the flow can be regulated by a material designed to manage it. The resolution of the ensuing system of ordinary differential equations (ODEs), representing the described problem, is accomplished through the application of the finite difference method. The examination of flow and heat transfer characteristics, including aspects such as unsteadiness, radiation parameter, slip velocity, Casson parameter, and Prandtl number, is explored and visually presented through tables and graphs to illustrate their impact. On the stretching sheet, calculations, and descriptions of the local skin-friction coefficient and the local Nusselt number are conducted. In conclusion, the findings indicate that the proposed method serves as a straightforward and efficient tool for exploring the solutions of fluid models of this kind.展开更多
基金supported in part by the National Natural Science Foundation of China (No. 12202363)。
文摘Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFC3202901)Natural Science Foundation of China(Grant No.51879121)+1 种基金Jiangsu Provincial Primary Research&Development Plan(Grant No.BE2019009-1)China Scholarship Council(Grant No.202108690020).
文摘Pressure fluctuation due to rotor-stator interaction in turbomachinery is unavoidable,inducing strong vibration in the equipment and shortening its lifecycle.The investigation of optimization methods for an industrial centrifugal pump was carried out to reduce the intensity of pressure fluctuation to extend the lifecycle of these devices.Considering the time-consuming transient simulation of unsteady pressure,a novel optimization strategy was proposed by discretizing design variables and genetic algorithm.Four highly related design parameters were chosen,and 40 transient sample cases were generated and simulated using an automatic program.70%of them were used for training the surrogate model,and the others were for verifying the accuracy of the surrogate model.Furthermore,a modified discrete genetic algorithm(MDGA)was proposed to reduce the optimization cost owing to transient numerical simulation.For the benchmark test,the proposed MDGA showed a great advantage over the original genetic algorithm regarding searching speed and effectively dealt with the discrete variables by dramatically increasing the convergence rate.After optimization,the performance and stability of the inline pump were improved.The efficiency increased by more than 2.2%,and the pressure fluctuation intensity decreased by more than 20%under design condition.This research proposed an optimization method for reducing discrete transient characteristics in centrifugal pumps.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11771259)Shaanxi Provincial Joint Laboratory of Artificial Intelligence(GrantNo.2022JCSYS05)+1 种基金Innovative Team Project of Shaanxi Provincial Department of Education(Grant No.21JP013)Shaanxi Provincial Social Science Fund Annual Project(Grant No.2022D332)。
文摘We propose the meshfree-based physics-informed neural networks for solving the unsteady Oseen equations.Firstly,based on the ideas of meshfree and small sample learning,we only randomly select a small number of spatiotemporal points to train the neural network instead of forming a mesh.Specifically,we optimize the neural network by minimizing the loss function to satisfy the differential operators,initial condition and boundary condition.Then,we prove the convergence of the loss function and the convergence of the neural network.In addition,the feasibility and effectiveness of the method are verified by the results of numerical experiments,and the theoretical derivation is verified by the relative error between the neural network solution and the analytical solution.
基金the Natural Science Foundation of Jiangsu Province(Grants No.BK20230202)Basic Science(Natural Science)Re-search Project of Colleges and Universities in Jiangsu Province(Grant No.22KJB130005)+3 种基金Changzhou Science and Technology Project(Grant No.CJ20220242)for financial supportJiaqing Kou would like to thank the support of the Alexander von Humboldt Foundation(Ref 3.5-CHN-1227287-HFST-P)Wenkai Yang would like to thank the support of the National Natural Science Foundation of China(Grant No.52205335)supported by Changzhou Sci&Tech Pro-gram(Grant No.CM20223013).
文摘The computational cost of unsteady adjoint equations remains high in adjoint-based unsteady aerodynamic op-timization.In this letter,the solution of unsteady adjoint equations is accelerated by dynamic mode decomposi-tion(DMD).The pseudo-time marching of every real-time step is approximated as an infinite-dimensional linear dynamical system.Thereafter,DMD is utilized to analyze the adjoint vectors sampled from these pseudo-time marching.First-order zero frequency mode is selected to accelerate the pseudo-time marching of unsteady adjoint equations in every real-time step.Through flow past a stationary circular cylinder and an unsteady aerodynamic shape optimization example,the efficiency of solving unsteady adjoint equations is significantly improved.Re-sults show that one hundred adjoint vectors contains enough information about the pseudo-time dynamics,and the adjoint dominant mode can be precisely predicted only by five snapshots produced from the adjoint vectors,which indicates DMD analysis for pseudo-time marching of unsteady adjoint equations is efficient.
文摘This article presents an investigation into the flow and heat transfer characteristics of an impermeable stretching sheet subjected to Magnetohydrodynamic Casson fluid. The study considers the influence of slip velocity, thermal radiation conditions, and heat flux. The investigation is conducted employing a robust numerical method that accounts for the impact of thermal radiation. This category of fluid is apt for characterizing the movement of blood within an industrial artery, where the flow can be regulated by a material designed to manage it. The resolution of the ensuing system of ordinary differential equations (ODEs), representing the described problem, is accomplished through the application of the finite difference method. The examination of flow and heat transfer characteristics, including aspects such as unsteadiness, radiation parameter, slip velocity, Casson parameter, and Prandtl number, is explored and visually presented through tables and graphs to illustrate their impact. On the stretching sheet, calculations, and descriptions of the local skin-friction coefficient and the local Nusselt number are conducted. In conclusion, the findings indicate that the proposed method serves as a straightforward and efficient tool for exploring the solutions of fluid models of this kind.