Uncovering shilling attackers hidden in recommender systems is very crucial to enhance the robustness and trustworthiness of product recommendation. Many shilling attack detection algorithms have been proposed so far,...Uncovering shilling attackers hidden in recommender systems is very crucial to enhance the robustness and trustworthiness of product recommendation. Many shilling attack detection algorithms have been proposed so far, and they exhibit complementary advantage and disadvantage towards various types of attackers. In this paper, we provide a thorough experimental comparison of several well-known detectors, including supervised C4.5 and NB, unsupervised PCA and MDS, semi-supervised HySAD methods, as well as statistical analysis methods. MovieLens 100K is the most widely-used dataset in the realm of shilling attack detection, and thus it is selected as the benchmark dataset. Meanwhile, seven types of shilling attacks generated by average-filling and random-filling model are compared in our experiments. As a result of our analysis, we show clearly causes and essential characteristics insider attackers that might determine the success or failure of different kinds of detectors.展开更多
文摘Uncovering shilling attackers hidden in recommender systems is very crucial to enhance the robustness and trustworthiness of product recommendation. Many shilling attack detection algorithms have been proposed so far, and they exhibit complementary advantage and disadvantage towards various types of attackers. In this paper, we provide a thorough experimental comparison of several well-known detectors, including supervised C4.5 and NB, unsupervised PCA and MDS, semi-supervised HySAD methods, as well as statistical analysis methods. MovieLens 100K is the most widely-used dataset in the realm of shilling attack detection, and thus it is selected as the benchmark dataset. Meanwhile, seven types of shilling attacks generated by average-filling and random-filling model are compared in our experiments. As a result of our analysis, we show clearly causes and essential characteristics insider attackers that might determine the success or failure of different kinds of detectors.