期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
跨语言词向量研究综述 被引量:12
1
作者 彭晓娅 周栋 《中文信息学报》 CSCD 北大核心 2020年第2期1-15,26,共16页
随着人们对互联网多语言信息需求的日益增长,跨语言词向量已成为一项重要的基础工具,并成功应用到机器翻译、信息检索、文本情感分析等自然语言处理领域。跨语言词向量是单语词向量的一种自然扩展,词的跨语言表示通过将不同的语言映射... 随着人们对互联网多语言信息需求的日益增长,跨语言词向量已成为一项重要的基础工具,并成功应用到机器翻译、信息检索、文本情感分析等自然语言处理领域。跨语言词向量是单语词向量的一种自然扩展,词的跨语言表示通过将不同的语言映射到一个共享的低维向量空间,在不同语言间进行知识转移,从而在多语言环境下对词义进行准确捕捉。近几年跨语言词向量模型的研究成果比较丰富,研究者们提出了较多生成跨语言词向量的方法。该文通过对现有的跨语言词向量模型研究的文献回顾,综合论述了近年来跨语言词向量模型、方法、技术的发展。按照词向量训练方法的不同,将其分为有监督学习、无监督学习和半监督学习三类方法,并对各类训练方法的原理和代表性研究进行总结以及详细的比较;最后概述了跨语言词向量的评估及应用,并分析了所面临的挑战和未来的发展方向。 展开更多
关键词 跨语言词向量 深度学习 有监督方法 半监督方法 无监督方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部