Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical sh...Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical shortfalls, especially the undesirable activity and durability issues of electrocatalysts toward methanol oxidation reaction. In light of these challenges, the inherent advantages of unsupported Pt based nanostructures demonstrate their great potentials as durable and efficient electrocatalysts for direct methanol fuel cells. This review will summarize recent achievements of unsupported Pt-based electrocatalysts toward methanol oxidation, with highlighting the interactions between the performance and structure tailoring and composition modulating. At last, a perspective is proposed for the upcoming challenges and possible opportunities to further prompt the practical application of unsupported Pt-based electrocatalysts for direct methanol fuel cells.展开更多
Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observ...Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observed, which is com- posed of high-speed jet tip, high-density jet slug, longitudinal tensile sparse zone, and complex broken zone between grooves. It is very different from the spike-bubble structure under supported shocks, and has been validated by detonation loading experiments. In comparison with that under supported shocks at the same peak pressure, the high-speed ejecta decreases obviously, whereas the truncated location of ejecta moves towards the interior of the sample and the total mass of ejecta increases due to the vast existence of low-speed broken materials. The shock wave profile determines mainly the total ejection amount, while the variation of V-groove angle will significantly alter the distribution of middle- and high-speed ejecta, and the maximum ejecta velocity has a linear corretation with the groove angle.展开更多
The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing ...The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.展开更多
A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the ...A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the roof stress distribution and URD,obtained by the difference method,and roof stability according to the in-situ roof stress and rock mass strength was developed.We subsequently designed a proper range of URD,developed a testing method of URD with the function of mining protection,evaluated roof stability through analyzing the test data and then determined a reasonable URD.Considering the factors of the geological conditions,the immediate roof stability and the efficiency of the labor arrangement system,the URD of the advancing roadway of 9802 working face in Zhangshuanglou coal mine was determined to be 6 m using the proposed method.The results show that,when a 2 m length of roadway was reinforced by temporary support and high pre-stressed bolt support after the roadway advancement of 6 m per cycle,the speed and the security of the roadway development can be achieved and the advance rate can reach more than 400 m per month.展开更多
New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied,i.e. excavate...New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied,i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules.展开更多
This paper reports a sustainable,water-assisted,solid-state method for synthesizing ammonium nickel molybdate((NH4)HNi2(OH)2(MoO4)2,ANM),a precursor for an unsupported hydrodesulfurization(HDS) catalyst.The ...This paper reports a sustainable,water-assisted,solid-state method for synthesizing ammonium nickel molybdate((NH4)HNi2(OH)2(MoO4)2,ANM),a precursor for an unsupported hydrodesulfurization(HDS) catalyst.The associated ANM formation mechanism is also discussed.The synthesis route consists of physical mixing of the raw materials,water-assisted grinding and heating.The formation mechanism involves replacement of a Mo atom by a Ni atom,generating the metastable intermediate(NH4)4(NiH6Mo6O(24))·5H2O.Heating of this intermediate at 120 ℃ removes the added water and produces ANM.Catalysts prepared by this method exhibit almost the same physicochemical properties and catalytic performance during the HDS of dibenzothiophene as materials made from ANM synthesized by a chemical precipitation procedure.Compared with traditional hydrothermal or chemical precipitation methods,this water-assisted,solid-state synthesis provides several significant advantages,including simplifying the synthetic procedure,reducing waste and energy costs and increasing product yields.These features will be highly important with regard to allowing the application of ANM in industrial-scale processes involving HDS reactions.This water-assisted,solid-state strategy can also be extended to the synthesis of isomorphous compounds such as ammonium cobalt(zinc and copper) molybdate.展开更多
A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum ...A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.展开更多
A green colonial microalgae Botryococcus braunii was hydrothermally processed under subcritical water conditions without the addition of catalysts,obtaining an oil yield as high as 68%.The higher heating value of liqu...A green colonial microalgae Botryococcus braunii was hydrothermally processed under subcritical water conditions without the addition of catalysts,obtaining an oil yield as high as 68%.The higher heating value of liquefaction products is close to that of petroleum crude oil.The oil fraction from Botryococcus braunii liquefaction was specified for the first time,and the liquefaction mechanism was proposed.Due to the high lipid content of Botryococcus braunii,the liquefaction product distribution is quite distinct from other microalgae.The produced biocrudes contain9%oxygen,with oleic acid as the main source.Amides derived from oleic acid and proteins are the major nitrogenates in the biocrudes.The biocrude was processed using catalytic cracking and hydrotreating.Catalytic cracking mostly produces aromatics,while the majority of hydrotreating products are straight and branched hydrocarbons.The oxygen content in the catalytic cracking products was very low.The presence of amides in the hydrotreating feed changes the reaction pathway from hydrodecarboxylation to hydrodeoxygenation as a result of the competitive adsorption of amides on the active sites for hydrodecarboxylation.Both processes show satisfactory denitrogenation performance.Catalytic cracking displays superior ability than hydrotreating with regards to the removal of oxygen.展开更多
基金financial supported by National 1000 Young Talents Program of ChinaNation Natural Science Foundation of China(21473111)+2 种基金The Innovation Foundation of Shenzhen Government(JCYJ20160408173202143)the Joint Fund of Energy Storage of Qingdao(20160012)the Innovation Research Funds of HUST(3004013109,0118013089,and 2017KFYXJJ164)
文摘Direct methanol fuel cells are one of the most promising alternative energy technologies in the foreseeable future, but its successful commercialization in large scale is still heavily hindered by several technical shortfalls, especially the undesirable activity and durability issues of electrocatalysts toward methanol oxidation reaction. In light of these challenges, the inherent advantages of unsupported Pt based nanostructures demonstrate their great potentials as durable and efficient electrocatalysts for direct methanol fuel cells. This review will summarize recent achievements of unsupported Pt-based electrocatalysts toward methanol oxidation, with highlighting the interactions between the performance and structure tailoring and composition modulating. At last, a perspective is proposed for the upcoming challenges and possible opportunities to further prompt the practical application of unsupported Pt-based electrocatalysts for direct methanol fuel cells.
基金Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.U1530261)the National Natural Science Foundation of China(Grant Nos.11402032 and 11502030)the Science Challenge Project,China(Grant No.TZ2016001)
文摘Dynamic failure and ejection characteristics of a periodic grooved Sn surface under unsupported shock loading are studied using a smoothed particle hydrodynamics method. An "Eiffel Tower" spatial structure is observed, which is com- posed of high-speed jet tip, high-density jet slug, longitudinal tensile sparse zone, and complex broken zone between grooves. It is very different from the spike-bubble structure under supported shocks, and has been validated by detonation loading experiments. In comparison with that under supported shocks at the same peak pressure, the high-speed ejecta decreases obviously, whereas the truncated location of ejecta moves towards the interior of the sample and the total mass of ejecta increases due to the vast existence of low-speed broken materials. The shock wave profile determines mainly the total ejection amount, while the variation of V-groove angle will significantly alter the distribution of middle- and high-speed ejecta, and the maximum ejecta velocity has a linear corretation with the groove angle.
基金The present work was supported by the National Natural Science Foundation of China(No.52008395).
文摘The unsupported sleeper can change the load characteristics of ballast particles and thus affect the dynamic stability of a ballasted bed.In this work,a laboratory test was constructed on a ballasted track containing unsupported sleepers.The ballasted track was excited by a wheelset,and the influence of unsupported sleepers on the dynamic stability of a ballasted bed was studied.The results show that the main frequency of the sleeper vibration appeared at 670 Hz,and the first-order rigid vibration mode at the frequency of 101 Hz had a significant effect on the condition without the unsupported sleeper.When the sleepers were continuously unsupported,the vibration damping effect of ballasted bed within the frequency range of 0–450 Hz was better than that at higher frequencies.Within the frequency range of 70–250 Hz,the vibration damping effect of the ballasted bed with unsupported sleepers was better than that without the unsupported sleeper.Owing to the excitation from the wheelset impact,the lateral resistance of the ballasted bed with unsupported sleepers whose hanging heights were 30,60,and 90 mm increased by 37.43%,12.25%,and 18.23%,respectively,while the lateral resistance of the ballasted bed without the unsupported sleeper remained basically unchanged.The unsupported sleeper could increase the difference in the quality of the ballasted bed between two adjacent sleepers.In addition,test results show that the hanging height of the unsupported sleeper had little effect on the lateral resistance of a ballasted bed without external excitation,but had an obvious effect on the rate of change of the lateral resistance of a ballasted bed and the acceleration amplitude of the sleeper vibration under the wheelset impact.
基金supported by the State Key Laboratory of Coal Resources and Sate Mining,China University of Mining and Technology (No.SKLCRSM13X07)the National Natural Science Foundation of China (No.51174195)+1 种基金Chinese National Programs for Fundamental Research and Development (No.2013CB227900)the Fundamental Research Funds for the Central Universities (No.2014XT01)
文摘A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the roof stress distribution and URD,obtained by the difference method,and roof stability according to the in-situ roof stress and rock mass strength was developed.We subsequently designed a proper range of URD,developed a testing method of URD with the function of mining protection,evaluated roof stability through analyzing the test data and then determined a reasonable URD.Considering the factors of the geological conditions,the immediate roof stability and the efficiency of the labor arrangement system,the URD of the advancing roadway of 9802 working face in Zhangshuanglou coal mine was determined to be 6 m using the proposed method.The results show that,when a 2 m length of roadway was reinforced by temporary support and high pre-stressed bolt support after the roadway advancement of 6 m per cycle,the speed and the security of the roadway development can be achieved and the advance rate can reach more than 400 m per month.
文摘New plasticity solutions to the drained stability of conical slopes in homogeneous cohesive-frictional soils were investigated by axisymmetric finite element limit analysis. Three parameters were studied,i.e. excavated height ratios, slope inclination angles, and soil friction angles. The influences of these parameters on the stability factor and predicted failure mechanism of conical slopes were discussed. A new design equation developed from a nonlinear regression of the lower bound solution was proposed for drained stability analyses of a conical slope in practice. Numerical examples were given to demonstrate a practical application of the proposed equation to stability evaluations of conical slopes with both associated and non-associated flow rules.
基金supported by the National Natural Science Fundation of China(U1162203,21106185)the Fundamental Research Funds for the Central Universities(15CX02023A,15CX06051A)Financial support from Petro China Corporation Limited~~
文摘This paper reports a sustainable,water-assisted,solid-state method for synthesizing ammonium nickel molybdate((NH4)HNi2(OH)2(MoO4)2,ANM),a precursor for an unsupported hydrodesulfurization(HDS) catalyst.The associated ANM formation mechanism is also discussed.The synthesis route consists of physical mixing of the raw materials,water-assisted grinding and heating.The formation mechanism involves replacement of a Mo atom by a Ni atom,generating the metastable intermediate(NH4)4(NiH6Mo6O(24))·5H2O.Heating of this intermediate at 120 ℃ removes the added water and produces ANM.Catalysts prepared by this method exhibit almost the same physicochemical properties and catalytic performance during the HDS of dibenzothiophene as materials made from ANM synthesized by a chemical precipitation procedure.Compared with traditional hydrothermal or chemical precipitation methods,this water-assisted,solid-state synthesis provides several significant advantages,including simplifying the synthetic procedure,reducing waste and energy costs and increasing product yields.These features will be highly important with regard to allowing the application of ANM in industrial-scale processes involving HDS reactions.This water-assisted,solid-state strategy can also be extended to the synthesis of isomorphous compounds such as ammonium cobalt(zinc and copper) molybdate.
文摘A series of unsupported MoS2 catalysts with or without Al2O3 modification was prepared using a modified thermal decomposition approach. The catalysts were tested for the methanation of carbon monoxide and the optimum one has 25.6wt-% Al2O3 content. The catalysts were characterized by nitrogen adsorption measurement, X-ray diffraction and transmission electron microscopy. The results show that adding appropriate amount of Al2O3 increases the dispersion of MoS2, and the increased interaction force between MoS2 and Al2O3 can inhibit the sintering of active MoS2 to some extent.
文摘A green colonial microalgae Botryococcus braunii was hydrothermally processed under subcritical water conditions without the addition of catalysts,obtaining an oil yield as high as 68%.The higher heating value of liquefaction products is close to that of petroleum crude oil.The oil fraction from Botryococcus braunii liquefaction was specified for the first time,and the liquefaction mechanism was proposed.Due to the high lipid content of Botryococcus braunii,the liquefaction product distribution is quite distinct from other microalgae.The produced biocrudes contain9%oxygen,with oleic acid as the main source.Amides derived from oleic acid and proteins are the major nitrogenates in the biocrudes.The biocrude was processed using catalytic cracking and hydrotreating.Catalytic cracking mostly produces aromatics,while the majority of hydrotreating products are straight and branched hydrocarbons.The oxygen content in the catalytic cracking products was very low.The presence of amides in the hydrotreating feed changes the reaction pathway from hydrodecarboxylation to hydrodeoxygenation as a result of the competitive adsorption of amides on the active sites for hydrodecarboxylation.Both processes show satisfactory denitrogenation performance.Catalytic cracking displays superior ability than hydrotreating with regards to the removal of oxygen.