In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu20 composite based pressure sensors. The pressed tablets of the CNT Cu20 composite are fabricated at...In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu20 composite based pressure sensors. The pressed tablets of the CNT Cu20 composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu20 micro particles are in the range of 3-4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m^2. The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ±2%.展开更多
Flexible strain sensors play an important role in electronic skins,wearable medical devices,and advanced robots.Herein,a highly sensitive and fast response optical strain sensor with two evanescently coupled optical m...Flexible strain sensors play an important role in electronic skins,wearable medical devices,and advanced robots.Herein,a highly sensitive and fast response optical strain sensor with two evanescently coupled optical micro/nanofibers(MNFs)embedded in a polydimethylsiloxane(PDMS)film is proposed.The strain sensor exhibits a gauge factor as high as 64.5 for strain≤0.5%and a strain resolution of 0.0012%which corresponds to elongation of 120 nm on a 1 cm long device.As a proof-of-concept,highly sensitive fingertip pulse measurement is realized.The properties of fast temporal frequency response up to 30 kHz and a pressure sensitivity of 102 kPa^(−1) enable the sensor for sound detection.Such versatile sensor could be of great use in physiological signal monitoring,voice recognition and micro-displacement detection.展开更多
Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biol...Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biological interfaces.While electronic skin continues to achieve higher sensitivity and faster response,its ultimate performance is fundamentally limited by the nature of low-frequency AC currents.Herein,highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers(MNFs)in thin layers of polydimethylsiloxane(PDMS).Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli,the skin-like optical sensors show ultrahigh sensitivity(1870 k·Pa^-1),low detection limit(7 mPa)and fast response(10μs)for pressure sensing,significantly exceeding the performance metrics of state-of-the-art electronic skins.Electromagnetic interference(EMI)-free detection of high-frequency vibrations,wrist pulse and human voice are realized.Moreover,a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated.These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.展开更多
Pseudo-spectral method is used to numerically model the diaphragm deflection of capacitive pressure micro-sensor under uniform load. The relationship between the capacitance of the micro-sensor and the load is then an...Pseudo-spectral method is used to numerically model the diaphragm deflection of capacitive pressure micro-sensor under uniform load. The relationship between the capacitance of the micro-sensor and the load is then analyzed after the description of the computational principle. For normal mode micro-sensor, the tensile force on the diaphragm can be ignored and thereby the capacitance increases linearly with the load increase only when the load is so small that the resultant deflection is less than the diaphragm thickness. The linear relationship between the capacitance and the load turns to be nonlinear thereafter and the capacitance rises dramatically with the constant increase of the load. For touch mode micro-sensor, an algorithm to determine the touch radius of the diaphragm and substrate is presented and the curve of capacitance versus load is shown on the numerical results laying a theoretical foundation for micro-sensor design.展开更多
随着工业技术的进步,高温高动态压力传感器的应用需求显著增加。提出一种集成专用补偿电路的高动态硅压阻式微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)压力传感器,进行压力敏感芯片的结构设计和加工工艺设计,并对压力传感...随着工业技术的进步,高温高动态压力传感器的应用需求显著增加。提出一种集成专用补偿电路的高动态硅压阻式微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)压力传感器,进行压力敏感芯片的结构设计和加工工艺设计,并对压力传感器进行封装和温度补偿电路设计。多层绝缘体上硅(Silicon On Insulator,SOI)材料能够使传感器在高温环境下正常工作。无引线的封装方式可有效提升传感器的频响性能。传感器后端集成了桥阻式专用集成电路(Application Specific Integrated Circuits,ASIC),能够显著减小传感器的体积,同时提升传感器整体性能。该MEMS传感器通过自动压力测试系统进行性能试验,结果表明MEMS压力传感器经过补偿后能够实现较高的线性度、稳定的零点输出特性以及理想的动态输出特性。展开更多
文摘In this paper, we present the design, the fabrication, and the experimental results of carbon nanotube (CNT) and Cu20 composite based pressure sensors. The pressed tablets of the CNT Cu20 composite are fabricated at a pressure of 353 MPa. The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm. The sizes of the Cu20 micro particles are in the range of 3-4 μm. The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm, respectively. In order to make low resistance electric contacts, the two sides of the pressed tablet are covered by silver pastes. The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m^2. The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ±2%.
基金We are grateful for financial supports from the National Natural Science Foundation of China(No.61975173)the National Key Research and Development Program of China(No.SQ2019YFC170311)+3 种基金the Major Scientific Research Project of Zhejiang Lab(No.2019MC0AD01)the Key Research and Development Project of Zhejiang Province(No.2021C05003)the Quantum Joint Funds of the Natural Foundation of Shandong Province(No.ZR2020LLZ007)the CIE-Tencent Robotics X Rhino-Bird Focused Research Program(No.2020-01-006).
文摘Flexible strain sensors play an important role in electronic skins,wearable medical devices,and advanced robots.Herein,a highly sensitive and fast response optical strain sensor with two evanescently coupled optical micro/nanofibers(MNFs)embedded in a polydimethylsiloxane(PDMS)film is proposed.The strain sensor exhibits a gauge factor as high as 64.5 for strain≤0.5%and a strain resolution of 0.0012%which corresponds to elongation of 120 nm on a 1 cm long device.As a proof-of-concept,highly sensitive fingertip pulse measurement is realized.The properties of fast temporal frequency response up to 30 kHz and a pressure sensitivity of 102 kPa^(−1) enable the sensor for sound detection.Such versatile sensor could be of great use in physiological signal monitoring,voice recognition and micro-displacement detection.
基金This work was supported by the National Key Research and Development Program of China(2016YFB1001300)the National Natural Science Foundation of China(No.11527901)the Fundamental Research Funds for the Central Universities.
文摘Electronic skin,a class of wearable electronic sensors that mimic the functionalities of human skin,has made remarkable success in applications including health monitoring,human-machine interaction and electronic-biological interfaces.While electronic skin continues to achieve higher sensitivity and faster response,its ultimate performance is fundamentally limited by the nature of low-frequency AC currents.Herein,highly sensitive skin-like wearable optical sensors are demonstrated by embedding glass micro/nanofibers(MNFs)in thin layers of polydimethylsiloxane(PDMS).Enabled by the transition from guided modes into radiation modes of the waveguiding MNFs upon external stimuli,the skin-like optical sensors show ultrahigh sensitivity(1870 k·Pa^-1),low detection limit(7 mPa)and fast response(10μs)for pressure sensing,significantly exceeding the performance metrics of state-of-the-art electronic skins.Electromagnetic interference(EMI)-free detection of high-frequency vibrations,wrist pulse and human voice are realized.Moreover,a five-sensor optical data glove and a 2×2-MNF tactile sensor are demonstrated.These initial results pave the way toward a new category of optical devices ranging from ultrasensitive wearable sensors to optical skins.
基金supported by the National Natural Science Foundation of China(Grant No.90207003).
文摘Pseudo-spectral method is used to numerically model the diaphragm deflection of capacitive pressure micro-sensor under uniform load. The relationship between the capacitance of the micro-sensor and the load is then analyzed after the description of the computational principle. For normal mode micro-sensor, the tensile force on the diaphragm can be ignored and thereby the capacitance increases linearly with the load increase only when the load is so small that the resultant deflection is less than the diaphragm thickness. The linear relationship between the capacitance and the load turns to be nonlinear thereafter and the capacitance rises dramatically with the constant increase of the load. For touch mode micro-sensor, an algorithm to determine the touch radius of the diaphragm and substrate is presented and the curve of capacitance versus load is shown on the numerical results laying a theoretical foundation for micro-sensor design.
文摘随着工业技术的进步,高温高动态压力传感器的应用需求显著增加。提出一种集成专用补偿电路的高动态硅压阻式微电子机械系统(Micro-Electro-Mechanical Systems,MEMS)压力传感器,进行压力敏感芯片的结构设计和加工工艺设计,并对压力传感器进行封装和温度补偿电路设计。多层绝缘体上硅(Silicon On Insulator,SOI)材料能够使传感器在高温环境下正常工作。无引线的封装方式可有效提升传感器的频响性能。传感器后端集成了桥阻式专用集成电路(Application Specific Integrated Circuits,ASIC),能够显著减小传感器的体积,同时提升传感器整体性能。该MEMS传感器通过自动压力测试系统进行性能试验,结果表明MEMS压力传感器经过补偿后能够实现较高的线性度、稳定的零点输出特性以及理想的动态输出特性。