Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properti...Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging.展开更多
Surface modification of up-conversion luminescence materials (Na[Y0.57Yb0.39Er0.04]F4 modified by amino groups) by grafting and modifying with aldehyde groups was studied by means of Fourier transform infrared spect...Surface modification of up-conversion luminescence materials (Na[Y0.57Yb0.39Er0.04]F4 modified by amino groups) by grafting and modifying with aldehyde groups was studied by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and emission spectrum (EM). The surface modification effect was compared using two different finishhag agents, p-phthalaldehyde and glutaraldehyde. It was found that the surface of up-conversion luminescence materials could be modified by aldehyde groups of the two finishing agents, the systematic dispersibility and the thermostability of the up-conversion luminescence material modified by p-phthalaldehyde were better than those of the material modified by glutaraldehyde, and the luminous intensity of the material modified by p-phthalaldehyde was increased. The AI (the ratio of the suspended segmental quality in the specimen to the total mass of the specimen) of the material modified by p-phthalaldehyde was higher than that of the material modified by glutaraldehyde. It is obviously seen that the embellishment effect of p-phthalaldehyde as a finishing agent was better than that of glutaraldehyde. In addition, the reasons why p-phthalaldehyde is a good finishing agent are also explained.展开更多
Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of...Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.展开更多
A new method was reported for surface modification of an up-conversion luminescence material with hydrosulfide group. The factors that may influence the surface modification,such as reaction time,amount of catalyzer a...A new method was reported for surface modification of an up-conversion luminescence material with hydrosulfide group. The factors that may influence the surface modification,such as reaction time,amount of catalyzer and modifier,and reaction solvent,were investigated. The optimal conditions were that the reaction time,the quantity of the basic catalyzer,the quantity of modifier and the volume of reaction solvent were 40 min,1.0,1.0,and 40 mL,respectively. The results indicated that hydrosulfide group content modified on the surface of up-conversion luminescence material reached to 0.1430 mmol/g,and this modified up-conversion luminescence material could be widely used in the study of structure of protein and the property of microenvironment.展开更多
The surface of an up-conversion luminescence material was modified by overcoating with SiOa, which was synthesized from a hydrolysis progress of telraethoxysilane (TEOS) in alkalescent condition. By analyzing the hy...The surface of an up-conversion luminescence material was modified by overcoating with SiOa, which was synthesized from a hydrolysis progress of telraethoxysilane (TEOS) in alkalescent condition. By analyzing the hydrolyzed mechanism of TEOS, it was found that there was not only physical adsorption but also chemical bonding between the up-conversion material and SiO2. At the same time, some adsorption bands at 1100, 475, 950, and 3500 cm^-1 were found by FI-IR, which were the characteristic bands of Si-OH and Si-O-Si. By analyzing the surface elements of the coated material by XPS, it was found that its surface only included Si, O, and C elements, and not F and Y. In the picture of XRD, there was no additional peak after surface modification, suggesting that the silica shell was amorphous. The small peak at 20 = 23° in the X-ray diffraction pattern of the coated material was caused by the amorphous SiO2 shell, and the TEM image also proved that the surface of the material was successfully modified by overcoating with SiO2. The amount of hydroxyls was then increased on the surface of the material, which made it easy to connect with other active groups.展开更多
Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impreg...Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.展开更多
Recently,there has been a global movement toward environmental protection and energy conservation through the design and development of new products in accordance with sustainable utilisation.In this study,rare earth ...Recently,there has been a global movement toward environmental protection and energy conservation through the design and development of new products in accordance with sustainable utilisation.In this study,rare earth luminescent materials were used owing to their active light emission and reusability.Additionally,solar lightemitting diode lights and car-light reflection were utilised to increase the recognition and reliability of reflective cat eyes.Along with carbon reduction,this can save energy and enhance road safety.This study considered the Theory of Inventive Problem Solving and a literature review to analyse the issues in existing products.Then,expert interviews were conducted to screen projects and develop product design policies.Finally,the ratio of light-storage materials was experimentally determined and the prototypes implemented.This cat’s eye addresses the shortcomings identified in previous analyses of existing products.We applied energy storage environmental protection materials,together with material proportioning(which balanced warning efficiency against cost-effectiveness)to develop diversified modular kits;these were flexible in terms of quantity and easily assembled.This study achieved four key objectives:(1)reducing the research and development costs of the manufacturer;(2)offering buyers a diverse suite of products;(3)responding to a need to improve diverse road user safety;and(4)reducing government procurement costs for safety warning products.The results provide a reference for the creative modular design of energy-saving products for public road safety planning in various industries.展开更多
Due to the outbreak of |x-19,colleges and universities have actively responded to the call of the state to carry out online teaching in completing their teaching tasks.After the epidemic,the online and offline hybrid ...Due to the outbreak of |x-19,colleges and universities have actively responded to the call of the state to carry out online teaching in completing their teaching tasks.After the epidemic,the online and offline hybrid teaching has become a novel mode of teaching which meets the requirements of teaching reform and the information society.This teaching method integrates both the online and offline teaching which plays an important role in enhancing teaching qualities and learning experiences.However,due to the lack of experience,there are some issues occurring in the teaching process of this method.The Luminescent Materials and Applications course is used as the subject in this article.The difficulties in traditional offline teaching as well as the advantages,detailed course construction process,and effectiveness evaluation of hybrid teaching are summarized and meticulously analyzed.In regard to that,the application of the online and offline hybrid teaching in the Luminescent Materials and Applications course is beneficial to the learning of professional knowledge and the cultivation of students'scientific literacy.Therefore,it is an effective way to improve and enrich this course by using the online and offline hybrid teaching method.展开更多
The luminescence of Nd3+-doped in NaBi(WO4)2 single crystal was investigated from 10 K to room temperature.The excitation source was a pulsed dye laser in resonance into the(4G5/2+2G(1)7/2) levels of Nd3+ ions.Several...The luminescence of Nd3+-doped in NaBi(WO4)2 single crystal was investigated from 10 K to room temperature.The excitation source was a pulsed dye laser in resonance into the(4G5/2+2G(1)7/2) levels of Nd3+ ions.Several blue emission bands in the up-conversion luminescence spectra corresponded to transitions from 2P1/2 to 4I9/2.Some violet bands corresponding to transitions of 4D3/2→(4I9/2,4I11/2,4I13/2) were also observed.For comparison,the luminescence spectra and decay curves excited by the pulsed 355 nm l...展开更多
The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conve...The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.展开更多
Europium and samarium co-doped strontium sulfide (SrS∶Eu, Sm) infrared up-conversion phosphor was synthesized through calcining the precursor, which prepared by wet-method with strontium carbonate (SrCO_3), sulphur (...Europium and samarium co-doped strontium sulfide (SrS∶Eu, Sm) infrared up-conversion phosphor was synthesized through calcining the precursor, which prepared by wet-method with strontium carbonate (SrCO_3), sulphur (S), europium oxide (Eu_2O_3) and samarium oxide (Sm_2O_3) as the starting materials, lithium fluoride (LiF) as the fluxing agent, at 750~1200 ℃ in carbon-reducing atmosphere. XRD analysis shows that SrS crystal structure is formed at 750 ℃, most completely at 1100 ℃. The IR up-conversion luminescence properties were characterized by excitation, emission, up-conversion excitation, up-conversion emission and thermoluminescence spectra. The spectral analysis associated with the physical model of up-conversion luminescence shows that the IR up-conversion luminescence is resulted from electron trapping process of Sm 3+ energy level. The thermoluminescence peak does not appear below 500 ℃ indicating the trapping energy level is appropriately deep, 800~1400 nm near infrared light can be the release light to realize up-conversion luminescence.展开更多
Up-conversion processes for the blue, green and red emissions were foundtwo-photon phenomenon, known as the cooperative phenomenon. This phenomenon was assisted by Nd^(3+)→ Yb^(3+) → Ho^(3+) energy transfer. The str...Up-conversion processes for the blue, green and red emissions were foundtwo-photon phenomenon, known as the cooperative phenomenon. This phenomenon was assisted by Nd^(3+)→ Yb^(3+) → Ho^(3+) energy transfer. The strong green emission due to the Ho^(3+) : (~5F_4, ~5S_2)→ ~5I_8 transitions was observed in Nd^(3+) - Ho^(3+) co-doped ZrF_4-based fluoride glasses under800 nm excitation. As an attempt to enhance Ho^(3+) up-conversion luminescences in the Nd^(3+) -Ho^(3+) co-doped ZrF_4-based glasses, Yb^(3+) ions were added to the glasses. As a result it wasfound that, in 800 nm excitation of 60ZrF_4. 30BaF2. (8-x)LaF_3. 1NdF_3. xYbF_3. 1HoF_3 glasses (x =0 to 7), sensitized up-conversion luminescences are observed at around 490 nm (blue), 545 nm(green), and 650 nm (red), which correspond to the Ho^(3+) : ~5F_3 → ~5I_8, ( ~5F_4, ~5S_2) →~5I_8 and ~5F_5 → ~5I_8 transitions respectively. The intensities of the green and red emissions ina 3 mol% YbF_3-containing glass were about 50 times stronger than those glasses without YbF_3. Thisis based on sensitization due to Yb^(3+) ions. In particular, the green emission was extremelystrong and the Nd^(3+) - Yb^(3+) - Ho^(3+) co-doped ZrF_4-based glasses have a high possibility ofrealizing a green up-conversion laser glass. In this paper the up-conversion mechanism in theglasses is discussed in detail.展开更多
The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-...The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.展开更多
Circularly polarized luminescent(CPL)materials have garnered attention for their diverse applications,including three-dimensional(3D)imaging,bio-imaging,chiral sensing,and other emerging fields.Traditionally,the fabri...Circularly polarized luminescent(CPL)materials have garnered attention for their diverse applications,including three-dimensional(3D)imaging,bio-imaging,chiral sensing,and other emerging fields.Traditionally,the fabrication of CPL-activated materials required the use of chiral luminescent small molecules.The introduction of the idea of self-assembly has transformed the production of CPL-activated materials,providing new and promising opportunities for their advancement.Through utilizing self-assembly,it is now feasible to produce chiral nano-assemblies with CPL activity not only from chiral molecules but also from non-chiral substances and inorganic nanoparticles.In addition,self-assembly routes provide a way to increase the asymmetry factor,creating possibilities for additional refinement and adjustment of CPL material characteristics.This review offers a summary of the current progress and developments in the self-assembly of small molecules and polymers,with a specific emphasis on their capacity to create or enhance CPL in different contexts.The aim of this review is to inspire interest in optical materials that are based on the principles of self-assembly.展开更多
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue...Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.展开更多
A novel rare earth luminescent material La2O2CO3 was synthesized successfully by sintering the mixture of La2(CO3)3 and KCl powders. The XRD results revealed that the additive KCl not only affected the crystal form an...A novel rare earth luminescent material La2O2CO3 was synthesized successfully by sintering the mixture of La2(CO3)3 and KCl powders. The XRD results revealed that the additive KCl not only affected the crystal form and crystallinity of the final product, but also greatly promoted its luminescence, compared with the products without adding KCl. The as-prepared material showed a strong green emission band centered at 470 nm under the excitation of 325 nm. Our experimental results indicated that the crystal form of La2O2CO3 affected its luminescent properties significantly. According to the primary analysis, the green emission might be related to the oxygen vacancies in La2O2CO3 lattice.展开更多
We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence c...We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field.展开更多
Progress of studies on various multi-color long afterglow luminescence materials was reviewed.Two luminescent mechanism of long afterglow behavior were discussed.Further research and development prospects about the ma...Progress of studies on various multi-color long afterglow luminescence materials was reviewed.Two luminescent mechanism of long afterglow behavior were discussed.Further research and development prospects about the materials were proposed.展开更多
Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxy...Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxyfiuorotellurite glasses under 800 nm excitation. Among these up-conversion luminescence, the green emission was extremely strong and the blue and red emission intensities were very weak. Selectively strong green up-conversion luminescence of these glasses indicate a high possibility for realizing a green upconversion laser. Up-conversion processes for the blue, green and red emissions are two-photon processes assisted by Nd3^+→Ho^3+ energy transfer. It is proposed that the up-conversion mechanism for the blue and green emissions is different from that for the red emission. The respective mechanisms are discussed.展开更多
文摘Rare earth luminescent materials have attracted significant attention due to their wide-ranging applications in the field of optoelectronics. This study aims to delve into the electronic structure and optical properties of rare earth luminescent materials, with the goal of uncovering their importance in luminescence mechanisms and applications. Through theoretical calculations and experimental methods, we conducted in-depth analyses on materials composed of various rare earth elements. Regarding electronic structure, we utilized computational techniques such as density functional theory to investigate the band structure, valence state distribution, and electronic density of states of rare earth luminescent materials. The results indicate that the electronic structural differences among different rare earth elements notably influence their luminescence performance, providing crucial clues for explaining the luminescence mechanism. In terms of optical properties, we systematically examined the material’s optical behaviors through fluorescence spectroscopy, absorption spectroscopy, and other experimental approaches. We found that rare earth luminescent materials exhibit distinct absorption and emission characteristics at different wavelengths, closely related to the transition processes of their electronic energy levels. Furthermore, we studied the influence of varying doping concentrations and impurities on the material’s optical properties. Experimental outcomes reveal that appropriate doping can effectively regulate the emission intensity and wavelength, offering greater possibilities for material applications. In summary, this study comprehensively analyzed the electronic structure and optical properties of rare earth luminescent materials, providing deep insights into understanding their luminescence mechanisms and potential value in optoelectronic applications. In the future, these research findings will serve as crucial references for the technological advancement in fields such as LEDs, lasers, and bioimaging.
基金This work was financially supported by the National Natural Science Foundation of China (Nos.50372006 and 20273007).
文摘Surface modification of up-conversion luminescence materials (Na[Y0.57Yb0.39Er0.04]F4 modified by amino groups) by grafting and modifying with aldehyde groups was studied by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and emission spectrum (EM). The surface modification effect was compared using two different finishhag agents, p-phthalaldehyde and glutaraldehyde. It was found that the surface of up-conversion luminescence materials could be modified by aldehyde groups of the two finishing agents, the systematic dispersibility and the thermostability of the up-conversion luminescence material modified by p-phthalaldehyde were better than those of the material modified by glutaraldehyde, and the luminous intensity of the material modified by p-phthalaldehyde was increased. The AI (the ratio of the suspended segmental quality in the specimen to the total mass of the specimen) of the material modified by p-phthalaldehyde was higher than that of the material modified by glutaraldehyde. It is obviously seen that the embellishment effect of p-phthalaldehyde as a finishing agent was better than that of glutaraldehyde. In addition, the reasons why p-phthalaldehyde is a good finishing agent are also explained.
文摘Two kinds of Tb( Ⅲ ) complexes with tetrapodal ligand, [TbL(NO3)]^3+ and [TbL]^3+ (L: 1,1, 1', 1'-tera ( 2-pyridinecarboxylester )-di ( trimethylpropane)) were intercalated into the interlayer space of montmorillonite (MT) by ion exchange and coordination reaction of L with the Tb^3+ ion existing in the interlayer space of Tb-MT respectively. The obtained luminescent supramolecular composite materials, [ TbL (NO3) ]^2+-MT and [TbL]^3+-MT were characterized by elemental analysis, XRD, FT-IR, UV-vis and thermal analysis. At the same time, the luminescent properties of the materials were also studied. The results show that the intercalated materials with regular layered structure, good thermal stability and the interlayer spacing (d001) approximates to the size of the complex ions which are located in the interlayer space of MT in the form of a monolayer.
基金the National Natural Science Foundations of China (No50372006 and No20273007)
文摘A new method was reported for surface modification of an up-conversion luminescence material with hydrosulfide group. The factors that may influence the surface modification,such as reaction time,amount of catalyzer and modifier,and reaction solvent,were investigated. The optimal conditions were that the reaction time,the quantity of the basic catalyzer,the quantity of modifier and the volume of reaction solvent were 40 min,1.0,1.0,and 40 mL,respectively. The results indicated that hydrosulfide group content modified on the surface of up-conversion luminescence material reached to 0.1430 mmol/g,and this modified up-conversion luminescence material could be widely used in the study of structure of protein and the property of microenvironment.
基金the National Natural Science Foundation of China (Nos. 50372006, 20273007, and 20407003).
文摘The surface of an up-conversion luminescence material was modified by overcoating with SiOa, which was synthesized from a hydrolysis progress of telraethoxysilane (TEOS) in alkalescent condition. By analyzing the hydrolyzed mechanism of TEOS, it was found that there was not only physical adsorption but also chemical bonding between the up-conversion material and SiO2. At the same time, some adsorption bands at 1100, 475, 950, and 3500 cm^-1 were found by FI-IR, which were the characteristic bands of Si-OH and Si-O-Si. By analyzing the surface elements of the coated material by XPS, it was found that its surface only included Si, O, and C elements, and not F and Y. In the picture of XRD, there was no additional peak after surface modification, suggesting that the silica shell was amorphous. The small peak at 20 = 23° in the X-ray diffraction pattern of the coated material was caused by the amorphous SiO2 shell, and the TEM image also proved that the surface of the material was successfully modified by overcoating with SiO2. The amount of hydroxyls was then increased on the surface of the material, which made it easy to connect with other active groups.
基金financial supportfrom PRAMX 98-05 and helpful discussion with Dr.A.C.Franville.
文摘Hybrid materials incorporating Eu-(TTA)(3). 2H(2)O (7hereafter designated as Eu-TTA, with TTA: thenoyltrifluoroacetone) in unmodified or modified MCM-41 by 3-aminopropyl-triethoxysilane (APTES) were prepared by impregnation method. The obtained materials were characterized using X-ray diffraction (XRD), IR and diffuse reflectance spectroscopy and luminescence spectra. All the hybrid samples exhibited the characteristic emission bands of EU3+ under UV light excitation at room temperature, and the excitation spectra showed significant blue-shifts compared to the pure rare-earth complex. Although the red emission intensity in the modified hybrid was almost the half of the red emission intensity in the pure Eu-TTA complex at room temperature, the hybrid showed a much higher thermal stability due to the shielding character of the MCM-41 host.
基金This work was supported by Ministry of Science and Technology funded by the Taiwan Government[Grant No.MOST 105-2622-E-327-011-CC3]However,the publication of our work is fully in MOST’s favor.
文摘Recently,there has been a global movement toward environmental protection and energy conservation through the design and development of new products in accordance with sustainable utilisation.In this study,rare earth luminescent materials were used owing to their active light emission and reusability.Additionally,solar lightemitting diode lights and car-light reflection were utilised to increase the recognition and reliability of reflective cat eyes.Along with carbon reduction,this can save energy and enhance road safety.This study considered the Theory of Inventive Problem Solving and a literature review to analyse the issues in existing products.Then,expert interviews were conducted to screen projects and develop product design policies.Finally,the ratio of light-storage materials was experimentally determined and the prototypes implemented.This cat’s eye addresses the shortcomings identified in previous analyses of existing products.We applied energy storage environmental protection materials,together with material proportioning(which balanced warning efficiency against cost-effectiveness)to develop diversified modular kits;these were flexible in terms of quantity and easily assembled.This study achieved four key objectives:(1)reducing the research and development costs of the manufacturer;(2)offering buyers a diverse suite of products;(3)responding to a need to improve diverse road user safety;and(4)reducing government procurement costs for safety warning products.The results provide a reference for the creative modular design of energy-saving products for public road safety planning in various industries.
基金supported by the 2019-2021 Undergraduate Teaching Project of Chengdu University of Information Technology(BKJX2020022,BKJX2020081)Department of Human Resources and Social Security of Sichuan Province(2019Z226).
文摘Due to the outbreak of |x-19,colleges and universities have actively responded to the call of the state to carry out online teaching in completing their teaching tasks.After the epidemic,the online and offline hybrid teaching has become a novel mode of teaching which meets the requirements of teaching reform and the information society.This teaching method integrates both the online and offline teaching which plays an important role in enhancing teaching qualities and learning experiences.However,due to the lack of experience,there are some issues occurring in the teaching process of this method.The Luminescent Materials and Applications course is used as the subject in this article.The difficulties in traditional offline teaching as well as the advantages,detailed course construction process,and effectiveness evaluation of hybrid teaching are summarized and meticulously analyzed.In regard to that,the application of the online and offline hybrid teaching in the Luminescent Materials and Applications course is beneficial to the learning of professional knowledge and the cultivation of students'scientific literacy.Therefore,it is an effective way to improve and enrich this course by using the online and offline hybrid teaching method.
基金supported by the Korea Science and Engineering Foundation (KOSEF) Grant funded by the Korean Government (MEST) (2009-0078682)
文摘The luminescence of Nd3+-doped in NaBi(WO4)2 single crystal was investigated from 10 K to room temperature.The excitation source was a pulsed dye laser in resonance into the(4G5/2+2G(1)7/2) levels of Nd3+ ions.Several blue emission bands in the up-conversion luminescence spectra corresponded to transitions from 2P1/2 to 4I9/2.Some violet bands corresponding to transitions of 4D3/2→(4I9/2,4I11/2,4I13/2) were also observed.For comparison,the luminescence spectra and decay curves excited by the pulsed 355 nm l...
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51132004,11474096,11604199,U1704145,and 11747101)the Fund from the Science and Technology Commission of Shanghai Municipality,China(Grant No.14JC1401500)+1 种基金the Henan Provincial Natural Science Foundation,China(Grant No.182102210117)the Higher Educational Key Program of Henan Province of China(Gant Nos.17A140025 and 16A140030)
文摘The up-conversion luminescence tuning of rare-earth ions is an important research topic for understanding luminescence mechanisms and promoting related applications. In this paper, we experimentally study the up-conversion luminescence tuning of Er3+-doped ceramic glass excited by the unshaped, V-shaped and cosine-shaped femtosecond laser field with different laser powers. The results show that green and red up-conversion luminescence can be effectively tuned by varying the power or spectral phase of the femtosecond laser field. We further analyze the up-conversion luminescence tuning mechanism by considering different excitation processes, including single-photon absorption(SPA), two-photon absorption(TPA), excited state absorption(ESA), and energy transfer up-conversion(ETU). The relative weight of TPA in the whole excitation process can increase with the increase of the laser power, thereby enhancing the intensity ratio between green and red luminescence(I547/I656). However, the second ETU(ETU2) process can generate red luminescence and reduce the green and red luminescence intensity ratio I547/I656, while the third ESA(ESA3) process can produce green luminescence and enhance its control efficiency. Moreover, the up-conversion luminescence tuning mechanism is further validated by observing the up-conversion luminescence intensity, depending on the laser power and the down-conversion luminescence spectrum under the excitation of 400-nm femtosecond laser pulse. These studies can present a clear physical picture that enables us to understand the up-conversion luminescence tuning mechanism in rare-earth ions, and can also provide an opportunity to tune up-conversion luminescence to promote its related applications.
文摘Europium and samarium co-doped strontium sulfide (SrS∶Eu, Sm) infrared up-conversion phosphor was synthesized through calcining the precursor, which prepared by wet-method with strontium carbonate (SrCO_3), sulphur (S), europium oxide (Eu_2O_3) and samarium oxide (Sm_2O_3) as the starting materials, lithium fluoride (LiF) as the fluxing agent, at 750~1200 ℃ in carbon-reducing atmosphere. XRD analysis shows that SrS crystal structure is formed at 750 ℃, most completely at 1100 ℃. The IR up-conversion luminescence properties were characterized by excitation, emission, up-conversion excitation, up-conversion emission and thermoluminescence spectra. The spectral analysis associated with the physical model of up-conversion luminescence shows that the IR up-conversion luminescence is resulted from electron trapping process of Sm 3+ energy level. The thermoluminescence peak does not appear below 500 ℃ indicating the trapping energy level is appropriately deep, 800~1400 nm near infrared light can be the release light to realize up-conversion luminescence.
文摘Up-conversion processes for the blue, green and red emissions were foundtwo-photon phenomenon, known as the cooperative phenomenon. This phenomenon was assisted by Nd^(3+)→ Yb^(3+) → Ho^(3+) energy transfer. The strong green emission due to the Ho^(3+) : (~5F_4, ~5S_2)→ ~5I_8 transitions was observed in Nd^(3+) - Ho^(3+) co-doped ZrF_4-based fluoride glasses under800 nm excitation. As an attempt to enhance Ho^(3+) up-conversion luminescences in the Nd^(3+) -Ho^(3+) co-doped ZrF_4-based glasses, Yb^(3+) ions were added to the glasses. As a result it wasfound that, in 800 nm excitation of 60ZrF_4. 30BaF2. (8-x)LaF_3. 1NdF_3. xYbF_3. 1HoF_3 glasses (x =0 to 7), sensitized up-conversion luminescences are observed at around 490 nm (blue), 545 nm(green), and 650 nm (red), which correspond to the Ho^(3+) : ~5F_3 → ~5I_8, ( ~5F_4, ~5S_2) →~5I_8 and ~5F_5 → ~5I_8 transitions respectively. The intensities of the green and red emissions ina 3 mol% YbF_3-containing glass were about 50 times stronger than those glasses without YbF_3. Thisis based on sensitization due to Yb^(3+) ions. In particular, the green emission was extremelystrong and the Nd^(3+) - Yb^(3+) - Ho^(3+) co-doped ZrF_4-based glasses have a high possibility ofrealizing a green up-conversion laser glass. In this paper the up-conversion mechanism in theglasses is discussed in detail.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61265004,51272097,and 11204113)the Nature and Science Fund from Yunnan Province Ministry of Education,China(Grant No.2011C13211708)
文摘The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.
基金supported by the National Natural Science Foundation of China(92356302,92256201,52273006,22071041,21971052,21871073)the Fundamental Research Funds for the Central Universities of China。
文摘Circularly polarized luminescent(CPL)materials have garnered attention for their diverse applications,including three-dimensional(3D)imaging,bio-imaging,chiral sensing,and other emerging fields.Traditionally,the fabrication of CPL-activated materials required the use of chiral luminescent small molecules.The introduction of the idea of self-assembly has transformed the production of CPL-activated materials,providing new and promising opportunities for their advancement.Through utilizing self-assembly,it is now feasible to produce chiral nano-assemblies with CPL activity not only from chiral molecules but also from non-chiral substances and inorganic nanoparticles.In addition,self-assembly routes provide a way to increase the asymmetry factor,creating possibilities for additional refinement and adjustment of CPL material characteristics.This review offers a summary of the current progress and developments in the self-assembly of small molecules and polymers,with a specific emphasis on their capacity to create or enhance CPL in different contexts.The aim of this review is to inspire interest in optical materials that are based on the principles of self-assembly.
基金Funded by the National Natural Science Foundation of China (No. 50772045)the Society Development Foundation of Yunnan Province (No. 2007E036M)
文摘Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white light can be adjustably tuned by changing doping concentrations of Er3+ion or the excitation power.In addition,the energy transfer processes among Tm3+,Er3+and Yb3+ions,and up-conversion mechanisms are discussed.
基金Science and Technology Development Fund (Shanghai ,0752nm008 ,JY601)
文摘A novel rare earth luminescent material La2O2CO3 was synthesized successfully by sintering the mixture of La2(CO3)3 and KCl powders. The XRD results revealed that the additive KCl not only affected the crystal form and crystallinity of the final product, but also greatly promoted its luminescence, compared with the products without adding KCl. The as-prepared material showed a strong green emission band centered at 470 nm under the excitation of 325 nm. Our experimental results indicated that the crystal form of La2O2CO3 affected its luminescent properties significantly. According to the primary analysis, the green emission might be related to the oxygen vacancies in La2O2CO3 lattice.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.11304396)the National Natural Science Foundation of China(Grant Nos.11474096 and 51132004)the Shanghai Municipal Science and Technology Commission,China(Grant No.14JC1401500)
文摘We propose a femtosecond laser polarization modulation scheme to control the up-conversion(UC) luminescence in Er^(3+)-doped NaYF_4 nanocrystals dispersed in the silicate glass. We show that the UC luminescence can be suppressed when the laser polarization is changed from linear through elliptical to circular, and the higher repetition rate will yield the lower control efficiency. We theoretically analyze the physical control mechanism of the UC luminescence polarization modulation by considering on- and near-resonant two-photon absorption, energy transfer up-conversion, and excited state absorption, and show that the polarization control mainly comes from the contribution of near-resonant two-photon absorption. Furthermore, we propose a method to improve the polarization control efficiency of UC luminescence in rare-earth ions by applying a two-color femtosecond laser field.
文摘Progress of studies on various multi-color long afterglow luminescence materials was reviewed.Two luminescent mechanism of long afterglow behavior were discussed.Further research and development prospects about the materials were proposed.
基金Supported by the National Natural Science Foundation of China (No.50772045)
文摘Blue, green and red up-conversion luminescence at around 490, 545 and 650 nm, which result from the Ho^3+5F3→5I8, (5F4,5S2)→3. 5I8 and 5F5→ 5I8 transitions, respectively, were observed in Nd3+-Ho3. co-doped oxyfiuorotellurite glasses under 800 nm excitation. Among these up-conversion luminescence, the green emission was extremely strong and the blue and red emission intensities were very weak. Selectively strong green up-conversion luminescence of these glasses indicate a high possibility for realizing a green upconversion laser. Up-conversion processes for the blue, green and red emissions are two-photon processes assisted by Nd3^+→Ho^3+ energy transfer. It is proposed that the up-conversion mechanism for the blue and green emissions is different from that for the red emission. The respective mechanisms are discussed.