期刊文献+
共找到98,346篇文章
< 1 2 250 >
每页显示 20 50 100
Quickly obtaining densely dispersed coherent particles in steel matrix and its related mechanical property
1
作者 Xiaoxiao Wang Qingsong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期111-118,共8页
Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid ... Densely distributed coherent nanoparticles(DCN)in steel matrix can enhance the work-hardening ability and ductility of steel simultaneously.All the routes to this end can be generally classified into the liquid-solid route and the solid-solid route.However,the formation of DCN structures in steel requires long processes and complex steps.So far,obtaining steel with coherent particle enhancement in a short time remains a bottleneck,and some necessary steps remain unavoidable.Here,we show a high-efficiency liquid-phase refining process reinforced by a dynamic magnetic field.Ti-Y-Mn-O particles had an average size of around(3.53±1.21)nm and can be obtained in just around 180 s.These small nanoparticles were coherent with the matrix,implying no accumulated dislocations between the particles and the steel matrix.Our findings have a potential application for improving material machining capacity,creep resistance,and radiation resistance. 展开更多
关键词 ferritic steels coherent particles MICROSTRUCTURE compression test work hardening
下载PDF
Varying of up-conversion nanoparticles luminescence from the muscle tissue depth during the compression 被引量:1
2
作者 Marina Kozintseva Vyacheslav Kochubey +1 位作者 Julia Konyukhova Valery Tuchin 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2021年第5期85-92,共8页
The current work is focused on the study of optical clearing of skeletal muscles under local compression.The experiments were performed on in vitro bovine skeletal muscle.The time dependence of optical clearing was st... The current work is focused on the study of optical clearing of skeletal muscles under local compression.The experiments were performed on in vitro bovine skeletal muscle.The time dependence of optical clearing was studied by monitoring the luminescence intensity of NaYF_(4)∶Er,Yb upconverting particles located under tissue layers.This study shows the possibility to use upconverting nanoparticles(UCNPs)both for studying the dynamics of the optical clearing of biological tissue under compression and to detect moments of cell wall damage under excessive pressure.The advantage of using UCNPs is the presence of several bands in their luminescence spectra,located both at close wavelengths and far apart. 展开更多
关键词 Upconverting particle biological tissue skeletal muscle tissue tissue optical clearing luminescence imaging technique mechanical compression
下载PDF
Preparation and up-conversion luminescence properties of Er:YbAG and Er:YAG single crystals
3
作者 Limin Wu Zeyu Cheng +7 位作者 Shoulei Xu Wenxia Wu Yazhao Wang Huiting Zhang Zhonghua Zhu Ninghan Zeng Bernard Albert Goodman Wen Deng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第18期1-8,共8页
High quality optical single crystals of cubic Yb_(2.96)Er_(0.04)Al_(5)O_(12)and Y_(2.96)Er_(0.04)A_(l5)O_(12)were successfully pre-pared using the OFZ method.The 980 nm photon absorption intensity by Yb_(2.96)Er_(0.04... High quality optical single crystals of cubic Yb_(2.96)Er_(0.04)Al_(5)O_(12)and Y_(2.96)Er_(0.04)A_(l5)O_(12)were successfully pre-pared using the OFZ method.The 980 nm photon absorption intensity by Yb_(2.96)Er_(0.04)Al_(5)O_(12)crystal is much larger than that in Y_(2.96)Er_(0.04)A_(l5)O_(12)crystal,the transmission of Yb_(2.96)Er_(0.04)Al_(5)O_(12)crystal is lower than that of Y_(2.96)Er_(0.04)A_(l5)O_(12)crystal,because the density of Yb_(2.96)Er_(0.04)Al_(5)O_(12)single crystal(6.604 g/cm^(3))is larger than that of Y_(2.96)Er_(0.04)A_(l5)O_(12)single crystal(4.529 g/cm^(3)).The up-conversion luminescence spec-tra of the crystals excited by 980 nm laser show several distinct groups of emission peaks at-544 and-556 nm,as well as-650 and-667 nm.The peak intensities of the up-conversion luminescence spec-trum for the Yb_(2.96)Er_(0.04)Al_(5)O_(12)crystal were much higher than those for the Y_(2.96)Er_(0.04)A_(l5)O_(12)crystal.Over-all,the results of the present study suggest that Yb_(2.96)Er_(0.04)Al_(5)O_(12)single crystal may have advantages over Y_(2.96)Er_(0.04)A_(l5)O_(12)single crystal for luminescence in solid-state lasers. 展开更多
关键词 YbAG single crystals up-conversion luminescence Rare earth ions
原文传递
When river meets ocean: distribution and conversion of suspended organic particles in a Sundarbans mangrove river-estuary system, Bangladesh
4
作者 Xiaochun Zou Yunhai Li +8 位作者 Liang Wang Mohammad Kawser Ahmed Keliang Chen Jianwei Wu Yonghang Xu Yunpeng Lin Baohong Chen Kankan Wu Jinwen Liu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第10期63-73,共11页
Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control fac... Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control factors of particulate organic carbon(POC)were studied by using the data of organic carbon contents and its carbon isotopic composition(δ13C)in the mainstream and estuary of Passur River in the Sundarbans area,combined with the hydrological and biological data measured by CTD.The results show that POC content ranged from 0.263 mg/L to 9.292 mg/L,and the POC content in the river section(averaged 4.129 mg/L)was significantly higher than that in the estuary area(averaged 0.858 mg/L).Two distinct stages of POC transport from land to sea in the Sundarbans area were identified.The first stage occurred in the river section,where POC distribution was mainly controlled by the dynamic process of runoff and the organic carbon was mainly terrestrial source.The second stage occurred during estuarine mixing,where the POC distribution was mainly controlled by the mixing process of seawater and freshwater.The source of POC was predominantly marine and exhibiting vertical differences.The surface and middle layers were primarily influenced by marine sources,while the bottom layer was jointly controlled by terrestrial and marine sources of organic carbon.These findings are of great significance for understanding the carbon cycle in such a large mangrove ecosystem like the Sundarbans mangrove. 展开更多
关键词 suspended particles particle organic carbon Sundarbans mangrove river-estuary system
下载PDF
Study of deep transportation and plugging performance of deformable gel particles in porous media
5
作者 Wen-Jing Zhao Jing Wang +1 位作者 Zhong-Yang Qi Hui-Qing Liu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期962-973,共12页
Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomen... Deformable gel particles(DGPs) possess the capability of deep profile control and flooding. However, the deep migration behavior and plugging mechanism along their path remain unclear. Breakage, an inevitable phenomenon during particle migration, significantly impacts the deep plugging effect. Due to the complexity of the process, few studies have been conducted on this subject. In this paper, we conducted DGP flow experiments using a physical model of a multi-point sandpack under various injection rates and particle sizes. Particle size and concentration tests were performed at each measurement point to investigate the transportation behavior of particles in the deep part of the reservoir. The residual resistance coefficient and concentration changes along the porous media were combined to analyze the plugging performance of DGPs. Furthermore, the particle breakage along their path was revealed by analyzing the changes in particle size along the way. A mathematical model of breakage and concentration changes along the path was established. The results showed that the passage after breakage is a significant migration behavior of particles in porous media. The particles were reduced to less than half of their initial size at the front of the porous media. Breakage is an essential reason for the continuous decreases in particle concentration, size, and residual resistance coefficient. However, the particles can remain in porous media after breakage and play a significant role in deep plugging. Higher injection rates or larger particle sizes resulted in faster breakage along the injection direction, higher degrees of breakage, and faster decreases in residual resistance coefficient along the path. These conditions also led to a weaker deep plugging ability. Smaller particles were more evenly retained along the path, but more particles flowed out of the porous media, resulting in a poor deep plugging effect. The particle size is a function of particle size before injection, transport distance, and different injection parameters(injection rate or the diameter ratio of DGP to throat). Likewise, the particle concentration is a function of initial concentration, transport distance, and different injection parameters. These models can be utilized to optimize particle injection parameters, thereby achieving the goal of fine-tuning oil displacement. 展开更多
关键词 Physical simulation Deformable gel particle BREAKAGE particle size Residual resistance coefficient
下载PDF
Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries 被引量:1
6
作者 N.IQBAL J.CHOI +2 位作者 S.F.SHAH C.LEE S.LEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期947-962,共16页
A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDO... A chemo-mechanical model is developed to investigate the effects on the stress development of the coating of polycrystalline Ni-rich LiNixMnyCo_(z)O_(2)(x≥0.8)(NMC)particles with poly(3,4-ethylenedioxythiophene)(PEDOT).The simulation results show that the coating of primary NMC particles significantly reduces the stress generation by efficiently accommodating the volume change associated with the lithium diffusion,and the coating layer plays roles both as a cushion against the volume change and a channel for the lithium transport,promoting the lithium distribution across the secondary particles more homogeneously.Besides,the lower stiffness,higher ionic conductivity,and larger thickness of the coating layer improve the stress mitigation.This paper provides a mathematical framework for calculating the chemo-mechanical responses of anisotropic electrode materials and fundamental insights into how the coating of NMC active particles mitigates stress levels. 展开更多
关键词 lithium-ion battery(LIB) polycrystalline particle COATING finite element simulation Ni-rich LiNixMnyCo_(z)O_(2)(x>0.8)(NMC)
下载PDF
Mass transfer enhancement and hydrodynamic performance with wire mesh coupling solid particles in bubble column reactor
7
作者 Chuanjun Di Jipeng Dong +3 位作者 Fei Gao Guanghui Chen Pan Zhang Jianlong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期195-205,共11页
It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on b... It is of vital significance to investigate mass transfer enhancements for chemical engineering processes.This work focuses on investigating the coupling influence of embedding wire mesh and adding solid particles on bubble motion and gas-liquid mass transfer process in a bubble column.Particle image velocimetry(PIV)technology was employed to analyze the flow field and bubble motion behavior,and dynamic oxygen absorption technology was used to measure the gas-liquid volumetric mass transfer coefficient(kLa).The effect of embedding wire mesh,adding solid particles,and wire mesh coupling solid particles on the flow characteristic and kLa were analyzed and compared.The results show that the gas-liquid interface area increases by 33%-72%when using the wire mesh coupling solid particles strategy compared to the gas-liquid two-phase flow,which is superior to the other two strengthening methods.Compared with the system without reinforcement,kLa in the bubble column increased by 0.5-1.8 times with wire mesh coupling solid particles method,which is higher than the sum of kLa increases with inserting wire mesh and adding particles,and the coupling reinforcement mechanism for affecting gas-liquid mass transfer process was discussed to provide a new idea for enhancing gas-liquid mass transfer. 展开更多
关键词 Fluid mechanics BUBBLE Mass transfer Wire mesh coupling solid particles particle image velocimetry Hydrodynamics
下载PDF
Influences of polymorphism of packed particles on bulk characterizations in fluidization realm
8
作者 Quanhong Zhu Yalong Cao +4 位作者 Qiang Zhang Wankun Liu Hao Guan Donghui Liu Hengjun Gai 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期238-248,共11页
The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many... The characterization of a particle ensemble(rather than a single particle) is of paramount significance to various particle technologies and has long been a fundamental subject in the fluidization realm. However, many of such bulk characterizations as loosely-packed density(ρbl), minimum fluidization velocity(Umf), sphericity(φ), discharge rate through orifice(q), angle of repose(β), and segregation index(S),were found to be poorly reproducible, making the reported results seldom comparable. Since these bulk characterizations started from the packed state of particles, such poor reproducibility was ascribed to the polymorphism of packed particles in this work. We observed that in the fluidized bed, the settled/packed state of particles varied monotonously with the settling rate(a) from complete fluidization to zero. This phenomenon confirmed the polymorphic characteristic of packed particles and further enabled us to systematically disclose/clarify its influences on the aforementioned bulk characterizations. Such influences could be comprehensively and intuitively reflected by the impacts induced by a. With the decrease of a, ρbl, φ and q first increased, then decreased, and finally leveled off while Umfand β showed an opposite trend. On the other hand, S first increased and then remained invariant. As per these findings and definitions of these bulk characterizations, benchmarks were indicated to unify the selection of settled state among future scholars and further make their outcomes become fairly comparable. Additionally, most packed states of the particle ensemble were proved to be metastable with their formation and behavior being identical to those of the amorphous state. 展开更多
关键词 FLUIDIZATION FLUIDIZED-BED particle POLYMORPHISM Bulk characterization Comparability
下载PDF
Solid Particle Erosion of AISI 304 SS Caused by Alumina Particles
9
作者 Juan Rodrigo Laguna-Camacho Celia María Calderón-Ramón +8 位作者 Víctor Velázquez-Martínez Javier Calderón-Sánchez Gabriel Juárez-Morales Cristóbal Cortez-Domínguez Jorge Alberto Chagoya-Ramírez Jesús Enrique López-Calderón Paul Ramírez-Sánchez Silvia Marina Sánchez-Yáñez Héctor Daniel López-Calderón 《Journal of Surface Engineered Materials and Advanced Technology》 2024年第1期1-14,共14页
This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the im... This research work was carried out with the aim of continuing to expand knowledge on the behaviour of AISI 304 stainless steel against solid particle erosion. In this particular case, the steel was subjected to the impact of alumina particles, which are hard abrasives with irregular and angular shapes. Different characterization techniques were applied to gain a better understanding of alumina. For instance, particle size distribution was obtained using the Analysette 28 Image Sizer and the particle size was between 300 - 400 µm. SEM and EDS analysis were used to know the morphology and chemical composition of both the abrasive particles and AISI 304 stainless steel. Additionally, mechanical properties values such as the hardness and Young’s modulus of AISI 304 steel were attained using a Berkovich indenter (model TTX-NHT, CSM Instruments). On the other hand, two tests were carried out for each impact angle used, 30˚, 45˚, 60˚ and 90˚, with a particle velocity of 24 ± 2 m/s and an abrasive flow rate of 63 ± 0.5 g/min, employing a test rig based on ASTM G76-95 standard. SEM images using two detectors, Backscattered Electron Detector (BED) and Low Electron Detector (LED), were employed to identify the wear mechanisms on the AISI 304 eroded surfaces at 30˚ and 90˚. Finally, the erosion rates of AISI 304 compared to those results reached by AISI 1018 steel and AISI 420 stainless steel tested under identical conditions in previous works. 展开更多
关键词 Solid particle Erosion AISI 304 Stainless Steel Alumina particles Wear Mechanisms Erosion Rates
下载PDF
Relationship between self-propelled velocity and Brownian motion for spherical and ellipsoid particles
10
作者 Jingwen Wang Ming Xu Deming Nie 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期305-311,共7页
The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles ... The Brownian motion of spherical and ellipsoidal self-propelled particles was simulated without considering the effect of inertia and using the Langevin equation and the diffusion coefficient of ellipsoidal particles derived by Perrin.The P´eclet number(Pe)was introduced to measure the relative strengths of self-propelled and Brownian motions.We found that the motion state of spherical and ellipsoid self-propelled particles changed significantly under the influence of Brownian motion.For spherical particles,there were three primary states of motion:1)when Pe<30,the particles were still significantly affected by Brownian motion;2)when Pe>30,the self-propelled velocities of the particles were increasing;and 3)when Pe>100,the particles were completely controlled by the self-propelled velocities and the Brownian motion was suppressed.In the simulation of the ellipsoidal self-propelled particles,we found that the larger the aspect ratio of the particles,the more susceptible they were to the influence of Brownian motion.In addition,the value interval of Pe depended on the aspect ratio.Finally,we found that the directional motion ability of the ellipsoidal self-propelled particles was much weaker than that of the spherical self-propelled particles. 展开更多
关键词 Brown motion self-propelled particle orientation movement
下载PDF
Artificial intelligence-motivated in-situ imaging for visualization investigation of submicron particles deposition in electric-flow coupled fields
11
作者 Shanlong Tao Xiaoyong Yang +1 位作者 Wei Yin Yong Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第10期13-21,共9页
This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biologica... This study delves into the intricate deposition dynamics of submicron particles within electric-flow coupled fields,underscoring the unique challenges posed by their minuscule size,aggregation tendencies,and biological reactivity.Employing an operando investigation system that synergizes microfluidic technology with advanced micro-visualization techniques within a lab-on-a-chip framework enables a meticulous examination of the dynamic deposition phenomena.The incorporation of object detection and deep learning methodologies in image processing streamlines the automatic identification and swift extraction of crucial data,effectively tackling the complexities associated with capturing and mitigating these hazardous particles.Combined with the analysis of the growth behavior of particle chain under different applied voltages,it established that a linear relationship exists between the applied voltage and θ.And there is a negative correlation between the average particle chain length and electric field strength at the collection electrode surface(4.2×10^(5)to 1.6×10^(6)V·m^(-1)).The morphology of the deposited particle agglomerate at different electric field strengths is proposed:dendritic agglomerate,long chain agglomerate,and short chain agglomerate. 展开更多
关键词 Artificial intelligence In-situ imaging Submicron particles LAB-ON-A-CHIP DEPOSITION
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
12
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
下载PDF
An Original Didactic about Standard Model: “The Particles’ Geometric Model” (Leptons and Bosons)
13
作者 Giovanni Guido Abele Bianchi Gianluigi Filippelli 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第4期1424-1449,共26页
This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscill... This work shows a didactic model representative (GPM) of the particles described in the Standard Model (SM). Particles are represented by geometric forms corresponding to geometric structures of coupled quantum oscillators. From the didactic hypotheses of the model emerges an in-depth phenomenology of particles that is fully compatible with that of SM. Thanks to this model, we can calculate “geometrically” the mass of Higgs’s Boson and the mass of the pair “muon and muonic neutrino”, and, by the geometric shapes of leptons and bosons, we can also solve crucial aspects of SM physics as the neutrinos’ oscillations and the intrinsic chirality of the neutrino and antineutrino. 展开更多
关键词 Golden particle QUARK LEPTONS IQuO Lattice BOSON HIGGS CHIRALITY
下载PDF
Extending homogeneous fluidization flow regime of Geldart-A particles by exerting axial uniform and steady magnetic field
14
作者 Qiang Zhang Wankun Liu +1 位作者 Hengjun Gai Quanhong Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期169-177,共9页
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi... The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased. 展开更多
关键词 FLUIDIZED-BED FLUIDIZATION Geldart-A particles Flow regimes EXTEND Magnetic stabilization
下载PDF
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
15
作者 Jiao Jiao Liu Xinxin Yang +3 位作者 Qiulei Xu Ruiguang Chang Zhenghui Wu Huaibin Shen 《Opto-Electronic Science》 2024年第4期1-11,共11页
Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,th... Quantum dot-based up-conversion photodetector,in which an infrared photodiode(PD)and a quantum dot light-emitting diode(QLED)are back-to-back connected,is a promising candidate for low-cost infrared imaging.However,the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently.This work revealed at least three origins for the efficiency losses.First,the PD unit and QLED unit usually didn’t work under optimal conditions at the same time.Second,the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination.Third,much emitted visible light was lost due to the strong visible absorption in the PD unit.Based on the understandings on the loss mechanisms,the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%.This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors. 展开更多
关键词 infrared colloidal quantum dots up-conversion photodetector integration loss INTERCONNECTION voltage allocation
下载PDF
Loss of energetic particles due to feedback control of resistive wall mode in HL-3
16
作者 Yifei ZHAO Yueqiang LIU +7 位作者 Guangzhou HAO Zhengxiong WANG Guanqi DONG Shuo WANG Chunyu LI Guanming YANG Yutian MIAO Yongqin WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期17-28,共12页
Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investig... Effects of three-dimensional(3D)magnetic field perturbations due to feedback control of an unstable n=1(n is toroidal mode number)resistive wall mode(RWM)on the energetic particle(EP)losses are systematically investigated for the HL-3 tokamak.The MARS-F(Liu et al 2000 Phys.Plasmas 73681)code,facilitated by the test particle guiding center tracing module REORBIT,is utilized for the study.The RWM is found to generally produce no EP loss for cocurrent particles in HL-3.Assuming the same perturbation level at the sensor location for the close-loop system,feedback produces nearly the same loss of counter-current EPs compared to the open-loop case.Assuming however that the sensor signal is ten times smaller in the close-loop system than the open-loop counter part(reflecting the fact that the RWM is more stable with feedback),the counter-current EP loss is found significantly reduced in the former.Most of EP losses occur only for particles launched close to the plasma edge,while particles launched further away from the plasma boundary experience much less loss.The strike points of lost EPs on the HL-3 limiting surface become more scattered for particles launched closer to the plasma boundary.Taking into account the full gyro-orbit of particles while approaching the limiting surface,REORBIT finds slightly enhanced loss fraction. 展开更多
关键词 energetic particles resistive wall mode HL-3
下载PDF
Discussion on“Dispersion characteristics of clayey soils containing waste rubber particles”[J Rock Mech Geotech Eng 15(2023)3050-3058]
17
作者 Prithvendra Singh Devendra Narain Singh Pintu Kumar Saw 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3864-3865,共2页
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s... We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature. 展开更多
关键词 Waste rubber particles Dispersion characteristics CLAY BENTONITE Scientific literature DISCUSSION
下载PDF
Effect of Ellipsoidal Particle Shape on Tribological Properties of Lubricants Containing Nanoparticles
18
作者 Ling Pan Zhi Li +1 位作者 Yunhui Chen Guobin Lin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期231-242,共12页
Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,t... Adding nanoparticles can significantly improve the tribological properties of lubricants.However,there is a lack of understanding regarding the influence of nanoparticle shape on lubrication performance.In this work,the influence of diamond nanoparticles(DNPs)on the tribological properties of lubricants is investigated through friction experiments.Additionally,the friction characteristics of lubricants regarding ellipsoidal particle shape are investigated using molecular dynamics(MD)simulations.The results show that DNPs can drastically lower the lubricant's friction coefficientμfrom 0.21 to 0.117.The shearing process reveals that as the aspect ratio(α)of the nanoparticles approaches 1.0,the friction performance improves,and wear on the wall diminishes.At the same time,the shape of the nanoparticles tends to be spherical.When 0.85≤α≤1.0,rolling is ellipsoidal particles'main form of motion,and the friction force changes according to a periodic sinusoidal law.In the range of 0.80≤α<0.85,ellipsoidal particles primarily exhibit sliding as the dominant movement mode.Asαdecreases within this range,the friction force progressively increases.The friction coefficientμcalculated through MD simulation is 0.128,which is consistent with the experimental data. 展开更多
关键词 Molecular dynamics simulation Nanoparticle additives Ellipsoidal particles Tribological properties
下载PDF
Influence of syngas components and ash particles on the radiative heat transfer in a radiant syngas cooler
19
作者 Chen Han Youmin Situ +4 位作者 Huaxing Zhu Jianliang Xu Zhenghua Dai Guangsuo Yu Haifeng Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期203-215,共13页
Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas ... Radiant syngas cooler(RSC)is widely used as a waste heat recovery equipment in industrial gasification.In this work,an RSC with radiation screens is established and the impact of gaseous radiative property models,gas components,and ash particles on heat transfer is investigated by the numerical simulation method.Considering the syngas components and the pressure environment of the RSC,a modified weighted-sum-of-gray-gases model was developed.The modified model shows high accuracy in validation.In computational fluid dynamics simulation,the calculated steam production is only 0.63%in error with the industrial data.Compared with Smith's model,the temperature decay along the axial direction calculated by the modified model is faster.Syngas components are of great significance to heat recovery capacity,especially when the absorbing gas fraction is less than 10%.After considering the influence of particles,the outlet temperature and the proportion of radiative heat transfer are less affected,but the difference in steam output reaches 2.7 t·h^(-1).The particle deposition on the wall greatly reduces the heat recovery performance of an RSC. 展开更多
关键词 Radiant syngas cooler Weighted-sum-of-gray-gases model Numerical simulation particle radiation
下载PDF
Optical Modeling of Sea Salt Aerosols Using in situ Measured Size Distributions and the Impact of Larger Size Particles
20
作者 Wushao LIN Lei BI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期1917-1935,共19页
Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.... Sea salt aerosols play a critical role in regulating the global climate through their interactions with solar radiation.The size distribution of these particles is crucial in determining their bulk optical properties.In this study,we analyzed in situ measured size distributions of sea salt aerosols from four field campaigns and used multi-mode lognormal size distributions to fit the data.We employed super-spheroids and coated super-spheroids to account for the particles’non-sphericity,inhomogeneity,and hysteresis effect during the deliquescence and crystallization processes.To compute the singlescattering properties of sea salt aerosols,we used the state-of-the-art invariant imbedding T-matrix method,which allows us to obtain accurate optical properties for sea salt aerosols with a maximum volume-equivalent diameter of 12μm at a wavelength of 532 nm.Our results demonstrated that the particle models developed in this study were successful in replicating both the measured depolarization and lidar ratios at various relative humidity(RH)levels.Importantly,we observed that large-size particles with diameters larger than 4μm had a substantial impact on the optical properties of sea salt aerosols,which has not been accounted for in previous studies.Specifically,excluding particles with diameters larger than 4μm led to underestimating the scattering and backscattering coefficients by 27%−38%and 43%−60%,respectively,for the ACE-Asia field campaign.Additionally,the depolarization ratios were underestimated by 0.15 within the 50%−70%RH range.These findings emphasize the necessity of considering large particle sizes for optical modeling of sea salt aerosols. 展开更多
关键词 sea salt aerosol particle size distribution LIDAR optical property
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部