The up-conversion luminescent property of the oxyfluoride glass ceramics 30SiO2·15Al2O3· (50-x)PbF2·xCdF2 doped with 4ErF3·1YbF3 has been investigated. Up-conversion luminescent intensity of Er^3...The up-conversion luminescent property of the oxyfluoride glass ceramics 30SiO2·15Al2O3· (50-x)PbF2·xCdF2 doped with 4ErF3·1YbF3 has been investigated. Up-conversion luminescent intensity of Er^3+ ions increased obviously after heat-treatment due to co-doping with CdF2. The structure model of nanocrystals PbxCdl-xF2 was determined and the effect of CdF2 in oxyfluoride glass ceramics was explained by the analysis of x-ray diffraction data. Different nucleation temperatures of samples with different compositions were obtained by differential thermal analysis curves and the results showed the growth process of different nanocrystals in glass ceramics.展开更多
The processing parameters and infrared up-conversion properties of fluoroborate glass ceramics in composition of BaB_2O_4+AlF_3+BaF_2+PbF_2∶YbF_3+HoF_3 were reported. The emission spectrum was measured by Hitachi F-4...The processing parameters and infrared up-conversion properties of fluoroborate glass ceramics in composition of BaB_2O_4+AlF_3+BaF_2+PbF_2∶YbF_3+HoF_3 were reported. The emission spectrum was measured by Hitachi F-4500 spectrometer. The results show that three emission peaks located at 470,545 and 655 nm respectively are observed,(among) which the peak at 545 nm is the strongest. Photon absorption theory and energy transmission theory are used to explain the emission spectrum.展开更多
Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The resu...Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
Deep color glass-ceramics is prepared by using gold tailings as the main raw material, and Cr2O3 is added as nucleation agent. Influence of different Cr2O3 additions on crystallization structure and properties of CaO-...Deep color glass-ceramics is prepared by using gold tailings as the main raw material, and Cr2O3 is added as nucleation agent. Influence of different Cr2O3 additions on crystallization structure and properties of CaO-MgO-Al2O3-SiO2 glass-ceramics has been discussed so as to select optimum additions. DTA is employed to determine optimum crystallization and nucleation temperatures; XRD and SEM are used to characterize microstructure of each sample; and performance indexes, such as water absorption, bulk density, flexural strength and so on, are also determined. Experimental results show that when 3wt% Cr2O3 is introduced, fine glass-ceramics with diopside as the main crystal and Ca-Fe diopside as the second-crystal is obtained, and its corresponding performance indexes are as follows: water absorption 0.12%, bulk density 2.56 g/cm^3, and flexural strength 70.01 Mpa.展开更多
The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-...The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.展开更多
Optically transparent Er3+/Tm3+/Yb3+ tri-doped oxyfluoride tellurite based nano-crystallized glass ceramics with the batching composition of 73TeO2-15ZnO-7ZnF2-3YF3-1.5YbF3-0.3ErF3-0.2TmF3 (mol%) is prepared by a...Optically transparent Er3+/Tm3+/Yb3+ tri-doped oxyfluoride tellurite based nano-crystallized glass ceramics with the batching composition of 73TeO2-15ZnO-7ZnF2-3YF3-1.5YbF3-0.3ErF3-0.2TmF3 (mol%) is prepared by a conventional melting quenching and the subsequent heat treatment processes. The sizes of grown nano-crystals in glass matrix appear to be smaller than 100 nm from the scanning electron mi- croscope measurement. Visible up-conversion luminescence of the as melted glass and glass ceramics is investigated. The three-color up-conversion luminescence intensities by 980-nm pumping are increased significantly due to the heat treatment, and the blue intensity increases with a higher magnitude than other wavelengths after heat treatment.展开更多
The distribution characteristics of Er^3+ ions doped in the oxyfluoride glass ceramics containing LaF3 nanocrystals heat-treated at 650 ℃ for different durations were investigated. The results of the integral absor...The distribution characteristics of Er^3+ ions doped in the oxyfluoride glass ceramics containing LaF3 nanocrystals heat-treated at 650 ℃ for different durations were investigated. The results of the integral absorption cross-section analysis demonstrated that the partition fraction of Er^3+ in LaF3 nanocrystals increases with prolonging of heating time, The anomalous phenomena of Er^3+ emissions in the up-and the down-conversion fluorescence spectra are well explained based on the calculated results.展开更多
Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, th...Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.展开更多
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, th...Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.展开更多
Glasses in the system 24.5Na<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O·24.5CaO·6P</span>...Glasses in the system 24.5Na<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O·24.5CaO·6P</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-family:Verdana;">·xSrO·(45-x)SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> have been</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> studied in the composition region of x = 0 - 15 mol%. The as prepared glasses are transparent and have an amorphous network structure. On the otherhand, heat treated glasses are transformed to opaque white glass ceramic characterized by their highly crystalline network structure. Crystalline apatite (calcium phosphate, Ca</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, wollastonite (calcium silicate, CaSiO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">), and strontium calcium phosphate</span></span><span style="font-family:Verdana;"> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">are the main well-formed crystalline species played the major role in material bioactivity. Increasing SrO leads to enhancing material crystallite and enhances the hardness of the host glass matrix. The change of XRD spectra, </span><sup><span style="font-size:12px;font-family:Verdana;">31</span></sup><span style="font-family:Verdana;">P NMR chemical shift and hardness number upon increasing SrO are considered due to modification of the apatit Ca(PO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> to involve Sr ions inducing Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr (PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> apatite one. Such species play the role in enhancing material properties and hardness.</span></span>展开更多
Tm3+-doped transparent oxyfluoride glass ceramics containing BaYbxY((1-x))F5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb3+-mediated ...Tm3+-doped transparent oxyfluoride glass ceramics containing BaYbxY((1-x))F5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb3+-mediated energy transfer process.The required photon number of Tm3+ions emissions in BaYbxY(1-x)F5 nanocrystals was calculated through the luminescence spectra,revealing the strong dependence of energy transfer mechanism on Yb3+ions concentration.Meanwhile,based on the fluore scence intensity ratio technology,the effect of different energy transfer mechanism on the temperature sensitivity was investigated by the temperature-dependent luminescence intensity of thermally coupled energy levels of Tm3+:1G4(a),1G4(b).The obtained sensitivity decreases with the increase of Yb3+ions content,which is mainly attributed to the changes in photon absorption process of Tm^3+:1G4(b).展开更多
The structure and properties of lithium aluminosilicate glasses containing Y203 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and Raman spe...The structure and properties of lithium aluminosilicate glasses containing Y203 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and Raman spectroscopy. Effects of yttria on the viscosity of LAS glasses were investigated, and found that the introduction of yttria effectively decreased the viscosity of LAS glasses. In Raman spectra of initial glasses it is shown the starting glasses are in almost complete disorder, since all bands are weak and broad. In the spectra of heat-treated specimens some new narrow bands appear and increase in intensity, and the frequency changes with varied yttria addition. The DTA and XRD results show that yttria controlled the crystallization of LAS glasses by increasing the crystallization peak temperature (T), however, the main crystalline phase of glass-ceramics was β-spodumene.展开更多
Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foami...Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering.The effect of the BA/FA mass ratio on the phase composition,pore morphology,pore size distribution,physical properties,and glass structure was investigated,with results showing that with the increase in the BA/FA ratio,the content of the glass phase,Si-O-Si,and Q3Si units decrease gradually.The glass transmission temperature of the mixture was also reduced.When combined,the glass viscosity decreases,causing bubble coalescence and uneven pore distribution.Glass ceramic foams with uniform spherical pores are fabricated.When the content of BA,FA,and PS are 35wt%,45wt%,and 20wt%,respectively,contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3,porosity of 56.01%,and compressive strength exceeding 16.23 MPa.This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.展开更多
Thin silver films are deposited by radio frequency magnetron sputtering on glass ceramic at room temperature.Variations of sputtering power,bios voltage and power density are carried out for each deposition,then parts...Thin silver films are deposited by radio frequency magnetron sputtering on glass ceramic at room temperature.Variations of sputtering power,bios voltage and power density are carried out for each deposition,then parts of as-deposited samples are subjected to annealing at 600 ℃ within a vacuum chamber.Structural properties are studied by X-ray diffraction(XRD),scanning electron microscope(SEM)and laser scanning confocal microscope(LSCM).It is shown that structural properties have a strong dependency on sputtering power and annealing temperature.Electrical contact resistance measured by a four point probe instrument is directly affected by the thickness of films.It is also found that the film conductivity,especially in thinner films,is improved by the increasing grain size.Finally,the film adhesion is observed by scratch tests.And the adhesive ability deposited by radio frequency magnetron sputtering shows a better performance than that produced by traditional methods.展开更多
P2O5-Na2O-CaO-SiO2 compounds are the base of certain glass types. Glasses are solids obtained by fast cooling of melted mix of certain compounds. Different compositions give origin to many products with a variety of a...P2O5-Na2O-CaO-SiO2 compounds are the base of certain glass types. Glasses are solids obtained by fast cooling of melted mix of certain compounds. Different compositions give origin to many products with a variety of applications such as: bottles, coatings, windows, tools for chemical industry, laboratory equipment, optics, as bioceramics, etc. The aim of this work was to analyze structural changes of different composition in the P2O5-Na2O-CaO-SiO2 systems thermally treated up to 1250?C, that is to say, before glass formation, by X ray diffraction. Intermediate and final developed phases up to 1100?C thermal treatment in samples were generated as a function of Na2O/CaO (1 and 1.62) and P2O5/Na2O ratios (0, 0.2 and 0.245). High-and low-combeites, calcium and sodium-calcium silicate were found at the highest studied temperature.展开更多
Cerium Pyrophosphate glass is prepared and investigated by different structural techniques. Resin modified glass ionomer cements (RGICs) of pyro cerium phosphate (40CeO2-60P2Os) composition doped with different concen...Cerium Pyrophosphate glass is prepared and investigated by different structural techniques. Resin modified glass ionomer cements (RGICs) of pyro cerium phosphate (40CeO2-60P2Os) composition doped with different concentrations from GaCl Phthalocyanine (C32H16ClGaN8) have been also prepared and studied for the first time. Different techniques have been applied to shed?light on the structural changes induced upon addition of GaCl-Phthalocyanine. The corresponding changes in material structure are widely approved by results of 31P magic angle spinning nuclear magnetic resonance (MAS-NMR), X-Ray diffraction and FTIR spectroscopy. The network structure of both base glass and GIC free from C32H16ClGaN8 is confirmed to be amorphous. Doping even with little concentration from GaCl-Phthalocyanine leads to changing the network structure from amorphous to a highly crystalline one. Formulation of GaCl-Phthalocyanine with water soluble acid leads to monocrystalline structure due to monoclinic lattice structure of Phthalocyanine. Carbonated hydroxyl cerium and gallium phosphate structural phases are evidenced to be formed upon GaCl-Phthalocyanine addition. Presence of such bioactive phases can support that the prepared GICs of considerable C32H16ClGaN8 concentration (1 and 1.5 mol%) can be applied as biocompatible materials used in biodental applications. The morphologies of some selected samples were characterized by SEM. The micrographs have revealed that formulating of cerium phosphate powder of the amorphous glass with polymeric acid successfully led to the formation of CePO4-H2O nanofibrous bundles. But formulation with GIC containing GaCl-Phthalocyanine can simply form co-aligned and elongated nanofibers (15 - 40 nm thick and up to ca. 1.2 m long). The formed nanofibers are mainly consisted of hydrated and carbonated CePO4 and GaPO4 nanocrystals. The hardness of the cemented material increases with increasing GaCl-Phthalocyanine concentrations.展开更多
文摘The up-conversion luminescent property of the oxyfluoride glass ceramics 30SiO2·15Al2O3· (50-x)PbF2·xCdF2 doped with 4ErF3·1YbF3 has been investigated. Up-conversion luminescent intensity of Er^3+ ions increased obviously after heat-treatment due to co-doping with CdF2. The structure model of nanocrystals PbxCdl-xF2 was determined and the effect of CdF2 in oxyfluoride glass ceramics was explained by the analysis of x-ray diffraction data. Different nucleation temperatures of samples with different compositions were obtained by differential thermal analysis curves and the results showed the growth process of different nanocrystals in glass ceramics.
文摘The processing parameters and infrared up-conversion properties of fluoroborate glass ceramics in composition of BaB_2O_4+AlF_3+BaF_2+PbF_2∶YbF_3+HoF_3 were reported. The emission spectrum was measured by Hitachi F-4500 spectrometer. The results show that three emission peaks located at 470,545 and 655 nm respectively are observed,(among) which the peak at 545 nm is the strongest. Photon absorption theory and energy transmission theory are used to explain the emission spectrum.
基金supported by the National Key R&D Program of China(No.2019YFC1905701)the National Natural Science Foundation of China(Nos.U1960201 and 52204336)the China Postdoctoral Science Foundation(No.2022M710359).
文摘Augite-based glass ceramics were synthesised using ZnO,FeO,and Fe_(2)O_(3)as additives,and the spinel formation,matrix structure,crystallisation thermodynamics,and physicochemical properties were investigated.The results showed that oxides resulted in numerous preliminary spinels in the glass matrix.FeO,ZnO,and Fe_(2)O_(3)influenced the formation of spinel,while FeO simplified the glass network.FeO and ZnO promoted bulk crystallisation of the parent glass.After adding oxides,the grains of augite phase were refined,and the relative quantities of augite crystal planes were also influenced.All samples displayed good mechanical properties and chemical stability.The 2wt%ZnO-doping sample displayed the maximum flexural strength(170.3 MPa).Chromium leaching amount values of all the samples were less than the national standard(1.5 mg/L),confirming the safety of the materials.In conclusion,an appropriate amount of zinc-containing raw material is beneficial for the preparation of augite-based glass ceramics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
文摘Deep color glass-ceramics is prepared by using gold tailings as the main raw material, and Cr2O3 is added as nucleation agent. Influence of different Cr2O3 additions on crystallization structure and properties of CaO-MgO-Al2O3-SiO2 glass-ceramics has been discussed so as to select optimum additions. DTA is employed to determine optimum crystallization and nucleation temperatures; XRD and SEM are used to characterize microstructure of each sample; and performance indexes, such as water absorption, bulk density, flexural strength and so on, are also determined. Experimental results show that when 3wt% Cr2O3 is introduced, fine glass-ceramics with diopside as the main crystal and Ca-Fe diopside as the second-crystal is obtained, and its corresponding performance indexes are as follows: water absorption 0.12%, bulk density 2.56 g/cm^3, and flexural strength 70.01 Mpa.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61265004,51272097,and 11204113)the Nature and Science Fund from Yunnan Province Ministry of Education,China(Grant No.2011C13211708)
文摘The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.
基金supported by the National"863"Project of China(No.2007AA03Z441)the National Natural Science Foundation of China(Nos.50672107 and 60607014)
文摘Optically transparent Er3+/Tm3+/Yb3+ tri-doped oxyfluoride tellurite based nano-crystallized glass ceramics with the batching composition of 73TeO2-15ZnO-7ZnF2-3YF3-1.5YbF3-0.3ErF3-0.2TmF3 (mol%) is prepared by a conventional melting quenching and the subsequent heat treatment processes. The sizes of grown nano-crystals in glass matrix appear to be smaller than 100 nm from the scanning electron mi- croscope measurement. Visible up-conversion luminescence of the as melted glass and glass ceramics is investigated. The three-color up-conversion luminescence intensities by 980-nm pumping are increased significantly due to the heat treatment, and the blue intensity increases with a higher magnitude than other wavelengths after heat treatment.
基金the National Natural Science Foundation of China (No. 50672098)the Project of Nano-molecular Functional Materials of Fujian Province (2005HZ01-1)
文摘The distribution characteristics of Er^3+ ions doped in the oxyfluoride glass ceramics containing LaF3 nanocrystals heat-treated at 650 ℃ for different durations were investigated. The results of the integral absorption cross-section analysis demonstrated that the partition fraction of Er^3+ in LaF3 nanocrystals increases with prolonging of heating time, The anomalous phenomena of Er^3+ emissions in the up-and the down-conversion fluorescence spectra are well explained based on the calculated results.
文摘Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61265004 and 51272097)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20125314120018)
文摘Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.
文摘Glasses in the system 24.5Na<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O·24.5CaO·6P</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-family:Verdana;">·xSrO·(45-x)SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> have been</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> studied in the composition region of x = 0 - 15 mol%. The as prepared glasses are transparent and have an amorphous network structure. On the otherhand, heat treated glasses are transformed to opaque white glass ceramic characterized by their highly crystalline network structure. Crystalline apatite (calcium phosphate, Ca</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, wollastonite (calcium silicate, CaSiO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">), and strontium calcium phosphate</span></span><span style="font-family:Verdana;"> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">are the main well-formed crystalline species played the major role in material bioactivity. Increasing SrO leads to enhancing material crystallite and enhances the hardness of the host glass matrix. The change of XRD spectra, </span><sup><span style="font-size:12px;font-family:Verdana;">31</span></sup><span style="font-family:Verdana;">P NMR chemical shift and hardness number upon increasing SrO are considered due to modification of the apatit Ca(PO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> to involve Sr ions inducing Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr (PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> apatite one. Such species play the role in enhancing material properties and hardness.</span></span>
基金Project supported by the National Natural Science Foundation of China(11774138,11664022,51862020)Foundation of Yunnan Province(2019HC016).
文摘Tm3+-doped transparent oxyfluoride glass ceramics containing BaYbxY((1-x))F5 nanocrystals were prepared via high temperature solid phase melting method,of which up-conversion emission is achieved by the Yb3+-mediated energy transfer process.The required photon number of Tm3+ions emissions in BaYbxY(1-x)F5 nanocrystals was calculated through the luminescence spectra,revealing the strong dependence of energy transfer mechanism on Yb3+ions concentration.Meanwhile,based on the fluore scence intensity ratio technology,the effect of different energy transfer mechanism on the temperature sensitivity was investigated by the temperature-dependent luminescence intensity of thermally coupled energy levels of Tm3+:1G4(a),1G4(b).The obtained sensitivity decreases with the increase of Yb3+ions content,which is mainly attributed to the changes in photon absorption process of Tm^3+:1G4(b).
基金the National Natural Science Foundation of China(No.50472039)
文摘The structure and properties of lithium aluminosilicate glasses containing Y203 were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA) and Raman spectroscopy. Effects of yttria on the viscosity of LAS glasses were investigated, and found that the introduction of yttria effectively decreased the viscosity of LAS glasses. In Raman spectra of initial glasses it is shown the starting glasses are in almost complete disorder, since all bands are weak and broad. In the spectra of heat-treated specimens some new narrow bands appear and increase in intensity, and the frequency changes with varied yttria addition. The DTA and XRD results show that yttria controlled the crystallization of LAS glasses by increasing the crystallization peak temperature (T), however, the main crystalline phase of glass-ceramics was β-spodumene.
基金the National key R&D projects(Nos.2019YFC1907101,2019YFC1907103,2017YFB0702304)the Key R&D project in Ningxia Hui Autonomous Region(No.2020BCE01001)+5 种基金the National Natural Science Foundation of China(No.51672024)the Xijiang Innovation and Entrepreneurship Team(No.2017A0109004)the Program of China Scholarships Coun-cil(No.201806465040)the Fundamental Research Funds for the Central Universities(Nos.FRF-IC-19-007,FRF-IC-19-017Z,FRF-MP-19-002,FRF-TP-19-003B1,FRF-GF-19-032B,and 06500141)the State Key Laboratory for Ad-vanced Metals and Materials(No.2019Z-05)the Integ-ration of Green Key Process Systems MIIT.
文摘Municipal solid waste incineration products of bottom ash(BA),fly ash(FA),and pickling sludge(PS),causing severe environ-mental pollution,were transformed into glass ceramic foams with the aid of CaCO3 as a pore-foaming agent during sintering.The effect of the BA/FA mass ratio on the phase composition,pore morphology,pore size distribution,physical properties,and glass structure was investigated,with results showing that with the increase in the BA/FA ratio,the content of the glass phase,Si-O-Si,and Q3Si units decrease gradually.The glass transmission temperature of the mixture was also reduced.When combined,the glass viscosity decreases,causing bubble coalescence and uneven pore distribution.Glass ceramic foams with uniform spherical pores are fabricated.When the content of BA,FA,and PS are 35wt%,45wt%,and 20wt%,respectively,contributing to high performance glass ceramic foams with a bulk density of 1.76 g/cm3,porosity of 56.01%,and compressive strength exceeding 16.23 MPa.This versatile and low-cost approach provides new insight into synergistically recycling solid wastes.
基金Supported by the National Natural Science Foundation of China(50975134)
文摘Thin silver films are deposited by radio frequency magnetron sputtering on glass ceramic at room temperature.Variations of sputtering power,bios voltage and power density are carried out for each deposition,then parts of as-deposited samples are subjected to annealing at 600 ℃ within a vacuum chamber.Structural properties are studied by X-ray diffraction(XRD),scanning electron microscope(SEM)and laser scanning confocal microscope(LSCM).It is shown that structural properties have a strong dependency on sputtering power and annealing temperature.Electrical contact resistance measured by a four point probe instrument is directly affected by the thickness of films.It is also found that the film conductivity,especially in thinner films,is improved by the increasing grain size.Finally,the film adhesion is observed by scratch tests.And the adhesive ability deposited by radio frequency magnetron sputtering shows a better performance than that produced by traditional methods.
文摘P2O5-Na2O-CaO-SiO2 compounds are the base of certain glass types. Glasses are solids obtained by fast cooling of melted mix of certain compounds. Different compositions give origin to many products with a variety of applications such as: bottles, coatings, windows, tools for chemical industry, laboratory equipment, optics, as bioceramics, etc. The aim of this work was to analyze structural changes of different composition in the P2O5-Na2O-CaO-SiO2 systems thermally treated up to 1250?C, that is to say, before glass formation, by X ray diffraction. Intermediate and final developed phases up to 1100?C thermal treatment in samples were generated as a function of Na2O/CaO (1 and 1.62) and P2O5/Na2O ratios (0, 0.2 and 0.245). High-and low-combeites, calcium and sodium-calcium silicate were found at the highest studied temperature.
文摘Cerium Pyrophosphate glass is prepared and investigated by different structural techniques. Resin modified glass ionomer cements (RGICs) of pyro cerium phosphate (40CeO2-60P2Os) composition doped with different concentrations from GaCl Phthalocyanine (C32H16ClGaN8) have been also prepared and studied for the first time. Different techniques have been applied to shed?light on the structural changes induced upon addition of GaCl-Phthalocyanine. The corresponding changes in material structure are widely approved by results of 31P magic angle spinning nuclear magnetic resonance (MAS-NMR), X-Ray diffraction and FTIR spectroscopy. The network structure of both base glass and GIC free from C32H16ClGaN8 is confirmed to be amorphous. Doping even with little concentration from GaCl-Phthalocyanine leads to changing the network structure from amorphous to a highly crystalline one. Formulation of GaCl-Phthalocyanine with water soluble acid leads to monocrystalline structure due to monoclinic lattice structure of Phthalocyanine. Carbonated hydroxyl cerium and gallium phosphate structural phases are evidenced to be formed upon GaCl-Phthalocyanine addition. Presence of such bioactive phases can support that the prepared GICs of considerable C32H16ClGaN8 concentration (1 and 1.5 mol%) can be applied as biocompatible materials used in biodental applications. The morphologies of some selected samples were characterized by SEM. The micrographs have revealed that formulating of cerium phosphate powder of the amorphous glass with polymeric acid successfully led to the formation of CePO4-H2O nanofibrous bundles. But formulation with GIC containing GaCl-Phthalocyanine can simply form co-aligned and elongated nanofibers (15 - 40 nm thick and up to ca. 1.2 m long). The formed nanofibers are mainly consisted of hydrated and carbonated CePO4 and GaPO4 nanocrystals. The hardness of the cemented material increases with increasing GaCl-Phthalocyanine concentrations.