This paper reports that the central position of the reflected and transmitted beams of a nonlinear polarized light beam at the interface between two media undergoes transverse shifts. It presents a solution to the pro...This paper reports that the central position of the reflected and transmitted beams of a nonlinear polarized light beam at the interface between two media undergoes transverse shifts. It presents a solution to the problem of transverse shift of a non-uniformly polarized paraxial light beam transmitting through interfaces between two homogeneous media by using a two-form amplitude and an extension matrix to represent the vector angular spectrum of a three-dimensional (3D) light beam. It derives general formula for the transverse shift of the transmitted beam, and discusses the shift of a well-collimated beam transmitting through an interface between two homogeneous media and a thin dielectric slab.展开更多
In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF a...In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60377025 and 60777017)Science andTechnology Commission of Shanghai Municipal (Grant No 04JC14036)the Shanghai Leading Academic Discipline Program(Grant No T0104)
文摘This paper reports that the central position of the reflected and transmitted beams of a nonlinear polarized light beam at the interface between two media undergoes transverse shifts. It presents a solution to the problem of transverse shift of a non-uniformly polarized paraxial light beam transmitting through interfaces between two homogeneous media by using a two-form amplitude and an extension matrix to represent the vector angular spectrum of a three-dimensional (3D) light beam. It derives general formula for the transverse shift of the transmitted beam, and discusses the shift of a well-collimated beam transmitting through an interface between two homogeneous media and a thin dielectric slab.
基金supported by Special Scientific and Research Funds for Doctoral Specialty of Institution of Higher Learning (200800060004)National Natural Science Foundation of China (No. 51177004)by the Innovation foundation of BUAA for Ph.D Graduates
文摘In this study, the changes of a vacuum arc's appearance were observed and the volt-ampere characteristics of the vacuum arc at intermediate frequency were analyzed under a transverse magnetic field (TMF). The TMF and phase shift time were calculated by using the TMF contact model and the large phase shift of the magnetic field at a higher frequency was conductive to the dispersion process of residual plasma. The arc velocity was higher at 800 Hz than at 400 Hz. It can be inferred that TMF will encourage arc movement at 800 Hz. Moreover, the arc movement has an impact on the arc voltage. Because of the increasing length of the arc column with a high arc velocity, the elongated arc causes the arc voltage to increase. Specifically, the volt-ampere characteristics of the vacuum arc are divided into three stages in this paper. The higher the frequency, the greater the initial rate of rise in the arc voltage and the larger the area surrounded by arc volt-ampere characteristics. The correlations between the arc voltage and the amplitude and frequency of the current are also presented.