Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy...Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance.展开更多
Background:The utilization of heterosis has greatly improved the productivity of cotton worldwide.However,a major constraint for the large-scale promotion of F_(1) hybrid cotton is artificial emasculation and pollinat...Background:The utilization of heterosis has greatly improved the productivity of cotton worldwide.However,a major constraint for the large-scale promotion of F_(1) hybrid cotton is artificial emasculation and pollination.This study proposed the potential utilization of F_(2) hybrids to improve upland cotton production through a comparative evaluation of hybrid generations.Results:Eight upland cotton varieties were analyzed and crosses were made according to NCII incomplete diallel cross-breeding design in two cotton belts of China.Variance analysis revealed significant differences in agronomic,yield,and fiber quality in both generations and environments.The broad-sense heritability of agronomic and yield traits was relatively higher than quality traits.Furthermore,the narrow-sense heritability of some traits was higher in F_(2) than in the F_(1) generation in both cotton belts.Overall,parental lines Zhong901,ZB,L28,and Z98 were observed with maximum combining ability while combinations with strong special combining ability were ZB×DT,L28×Z98,and ZB×851.The yield traits heterosis was predominant in both generations.However,the level of heterosis was altered with trait,hybrid combination,generation,and environment.Interestingly,L28×Z98 performed outstandingly in Anyang.Its lint yield(LY)was 24.2%higher in F_(1) and 11.6%in F_(2) than that of the control Ruiza 816.The performance of SJ48×Z98 was excellent in Aral which showed 36.5%higher LY in F_(2)and 10.9%in F_(2)than control CCRI 49.Further results revealed most hybrid combinations had shown a low level of heterosis for agronomic and fiber quality traits in both generations.Comparatively,ZB×DT and L28×Z98 showed hybrid vigor for multiple traits in both generations and cotton belts.It is feasible to screen strong heterosis hybrid combinations with fine fiber in early generations.In the two environments,the correlation of some traits showed the same trend,and the correlation degree of Anyang site was higher than that of Aral site,and the correlation of some traits showed the opposite trend.According to the performance of strong heterosis hybrid combinations in different environments,the plant type,yield and fiber traits associated with them can be improved according to the correlation.Conclusions:Through comparative analysis of variance,combining ability,and heterosis in F_(2)and F_(2)hybrids in different cotton belts,this study proposed the potential utilization of F_(2)hybrids to improve upland cotton productivity in China.展开更多
基金Higher Education Commission of Pakistan for funding the experiments
文摘Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance.
基金sponsored by funds from the Zhongyuan Academician Foundation (212101510001)the Fundamental Research Funds for State Key Laboratory of Cotton Biology (CB2021C08)the General Program of the National Natural Science Foundation of China (31871679)
文摘Background:The utilization of heterosis has greatly improved the productivity of cotton worldwide.However,a major constraint for the large-scale promotion of F_(1) hybrid cotton is artificial emasculation and pollination.This study proposed the potential utilization of F_(2) hybrids to improve upland cotton production through a comparative evaluation of hybrid generations.Results:Eight upland cotton varieties were analyzed and crosses were made according to NCII incomplete diallel cross-breeding design in two cotton belts of China.Variance analysis revealed significant differences in agronomic,yield,and fiber quality in both generations and environments.The broad-sense heritability of agronomic and yield traits was relatively higher than quality traits.Furthermore,the narrow-sense heritability of some traits was higher in F_(2) than in the F_(1) generation in both cotton belts.Overall,parental lines Zhong901,ZB,L28,and Z98 were observed with maximum combining ability while combinations with strong special combining ability were ZB×DT,L28×Z98,and ZB×851.The yield traits heterosis was predominant in both generations.However,the level of heterosis was altered with trait,hybrid combination,generation,and environment.Interestingly,L28×Z98 performed outstandingly in Anyang.Its lint yield(LY)was 24.2%higher in F_(1) and 11.6%in F_(2) than that of the control Ruiza 816.The performance of SJ48×Z98 was excellent in Aral which showed 36.5%higher LY in F_(2)and 10.9%in F_(2)than control CCRI 49.Further results revealed most hybrid combinations had shown a low level of heterosis for agronomic and fiber quality traits in both generations.Comparatively,ZB×DT and L28×Z98 showed hybrid vigor for multiple traits in both generations and cotton belts.It is feasible to screen strong heterosis hybrid combinations with fine fiber in early generations.In the two environments,the correlation of some traits showed the same trend,and the correlation degree of Anyang site was higher than that of Aral site,and the correlation of some traits showed the opposite trend.According to the performance of strong heterosis hybrid combinations in different environments,the plant type,yield and fiber traits associated with them can be improved according to the correlation.Conclusions:Through comparative analysis of variance,combining ability,and heterosis in F_(2)and F_(2)hybrids in different cotton belts,this study proposed the potential utilization of F_(2)hybrids to improve upland cotton productivity in China.