The beginning of the Japanese Upper Paleolithic has mainly been examined using two major models:the Middle Paleolithic evolutionary model within the archipelago and the continental Upper Paleolithic diffusion/migratio...The beginning of the Japanese Upper Paleolithic has mainly been examined using two major models:the Middle Paleolithic evolutionary model within the archipelago and the continental Upper Paleolithic diffusion/migration model.However,recent archeological data from Japan and nearby countries are challenging such simple models.This paper critically reviews previous chronology of the Japanese Paleolithic,including possible Lower and Middle Paleolithic(LP/MP),and attempts to show an alternative model of the beginning of the Japanese Upper Paleolithic.This paper suggests several possible specimens of LP/MP and recommends further geoarchaeological investigation to understand the reliability and cultural relationship between possible LP/MP specimens and the Early Upper Paleolithic(EUP).The start of the Japanese EUP is presently characterized by a flake industry with trapezoids and denticulates around 39-37 kaBP cal on Paleo-Honshu Island,which has partial resemblance with contemporary assemblages in China and the Korean Peninsula,although trapezoids are endemic only to the Japanese EUP and may have derived from the ancestral lithic tradition.Blade technology appeared earliest on Central Paleo-Honshu Island,about 1000 years later than the earliest flake technology.Although blade technology may have originated from the elongated flake technology of the previous period,the sudden simultaneous emergence implies that it diffused from the Korean Peninsula.This paper proposes that blade technology from the Korean Peninsula arrived on the northeastern Paleo-Honshu Island,including the Japan Sea coastal region of western Honshu,rather than the southwest,where flake technology long prospered,due to differences in ecological settings and adaptation strategies between the two regions.展开更多
Here,we consider earlier Upper Paleolithic sites in the Selenga River Basin,the main fluvial input of Lake Baikal that flows through northern Mongolia and the southwestern Transbaikal region of Russia.Lithic industrie...Here,we consider earlier Upper Paleolithic sites in the Selenga River Basin,the main fluvial input of Lake Baikal that flows through northern Mongolia and the southwestern Transbaikal region of Russia.Lithic industries from these sites can be attributed to the laminar Initial Upper Paleolithic(IUP)technocomplex,widespread in southern Siberia and Central Asia.IUP industries appear in the Selenga Basin about 45 kaBP cal.Aspects of regional typological variability and the transport of exotic raw materials over long distances indicate that these populations participated in developed exchange networks and employed high mobility targeting the acquisition of necessary raw materials.Two site types are present:quarry-workshops in northern Mongolia and generalized activity settlements in the southwestern Transbaikal.Although faunal data are limited,we interpret available information as indicating a specialization on hunting,focusing on migrating steppe game species.The distribution of sites in the mid-altitudes and landscapes of the Selenga-Orkhon geographical region and the geomorphological homogeneity of this territory also supported interregional human moves during the IUP.展开更多
The timing and mechanisms of the human occupation of the demanding high-altitude Tibetan Plateau environment are of great interest.Here,we report on our reinvestigations and dating of the Nwya Devu site,located nearly...The timing and mechanisms of the human occupation of the demanding high-altitude Tibetan Plateau environment are of great interest.Here,we report on our reinvestigations and dating of the Nwya Devu site,located nearly 4600 meters above sea level on the central Tibetan Plateau.A new microblade techno-complex was identified on a lower lake shore at this site,distinct from the previously reported blade tool assemblage.These two lithic assemblages were dated to 45.6±2.6 and10.3±0.5 ka using optically stimulated luminescence and accelerator mass spectrometry^(14)C methods.They represent,respectively,the earliest known Paleolithic and microlithic sites on the interior Tibetan Plateau,indicating multiple occupation episodes of hunter-gatherers during the past 45 ka.Our studies reveal that relatively stable depositional conditions and a paleoenvironment characterized by a comparatively warm climate facilitated these multiple occupations at Nwya Devu.The contemporaneous occurrence of the Upper Paleolithic blade technology on the Tibetan Plateau and most of Eurasia between 50 and 40 ka indicates rapid,large-scale dispersals of humans that profoundly affected human demography on a large scale.Combining new archaeological evidence and previously reported genetic data,we conclude that the Tibetan Plateau provided a relatively stable habitat for Upper Paleolithic hunter-gatherers,which may have contributed to the complex and multiple-origin gene pool of present-day Tibetans.展开更多
Shuidonggou site has abundant Paleolithic remains of Late Pleistocene deposition. Studying the evolution of depositional environments is essential to the comprehensive understanding of the living conditions of ancient...Shuidonggou site has abundant Paleolithic remains of Late Pleistocene deposition. Studying the evolution of depositional environments is essential to the comprehensive understanding of the living conditions of ancient populations. To reconstruct the depositional environment at Shuidonggou, we carried out archaeological excavations and collected systematic deposition samples at the key position of Shuidonggou Locality 2 for grain size analysis and sporopollen statistics. The environmental evolution around the Shuidonggou site generally underwent four stages at ~72-18 kaBP. During the first stage (~72-41 kaBP), the river developed with gravel and sand stratums. During the second stage (41-34 kaBP), a swamp with numerous aquatic plants formed. In the third stage (34-29 kaBP), site formation was characterized by shallow lake depositional conditions; the climate was relatively warm and humid. The marginal bank depositional conditions deteriorated during the fourth stage (29-18 kaBP), and the site underwent several dry events; the climate also became drier and colder.展开更多
The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this p...The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination.展开更多
基金JSPS KAKENHI Grant Numbers 18H03596(PI:Yosuke Kaifu)JP19H01336(PI:Hiroyuki Sato)21H00608(PI:Kazuki Morisaki)。
文摘The beginning of the Japanese Upper Paleolithic has mainly been examined using two major models:the Middle Paleolithic evolutionary model within the archipelago and the continental Upper Paleolithic diffusion/migration model.However,recent archeological data from Japan and nearby countries are challenging such simple models.This paper critically reviews previous chronology of the Japanese Paleolithic,including possible Lower and Middle Paleolithic(LP/MP),and attempts to show an alternative model of the beginning of the Japanese Upper Paleolithic.This paper suggests several possible specimens of LP/MP and recommends further geoarchaeological investigation to understand the reliability and cultural relationship between possible LP/MP specimens and the Early Upper Paleolithic(EUP).The start of the Japanese EUP is presently characterized by a flake industry with trapezoids and denticulates around 39-37 kaBP cal on Paleo-Honshu Island,which has partial resemblance with contemporary assemblages in China and the Korean Peninsula,although trapezoids are endemic only to the Japanese EUP and may have derived from the ancestral lithic tradition.Blade technology appeared earliest on Central Paleo-Honshu Island,about 1000 years later than the earliest flake technology.Although blade technology may have originated from the elongated flake technology of the previous period,the sudden simultaneous emergence implies that it diffused from the Korean Peninsula.This paper proposes that blade technology from the Korean Peninsula arrived on the northeastern Paleo-Honshu Island,including the Japan Sea coastal region of western Honshu,rather than the southwest,where flake technology long prospered,due to differences in ecological settings and adaptation strategies between the two regions.
文摘Here,we consider earlier Upper Paleolithic sites in the Selenga River Basin,the main fluvial input of Lake Baikal that flows through northern Mongolia and the southwestern Transbaikal region of Russia.Lithic industries from these sites can be attributed to the laminar Initial Upper Paleolithic(IUP)technocomplex,widespread in southern Siberia and Central Asia.IUP industries appear in the Selenga Basin about 45 kaBP cal.Aspects of regional typological variability and the transport of exotic raw materials over long distances indicate that these populations participated in developed exchange networks and employed high mobility targeting the acquisition of necessary raw materials.Two site types are present:quarry-workshops in northern Mongolia and generalized activity settlements in the southwestern Transbaikal.Although faunal data are limited,we interpret available information as indicating a specialization on hunting,focusing on migrating steppe game species.The distribution of sites in the mid-altitudes and landscapes of the Selenga-Orkhon geographical region and the geomorphological homogeneity of this territory also supported interregional human moves during the IUP.
基金supported by the National Natural Science Foundation of China(Grant Nos.41888101,41977380 and 42072033)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB26000000 and XDA2004010102)+3 种基金the Second Tibetan Plateau Scientific Expedition and Research(Grant No.2019QZKK0601)the National Social Science Foundation of China(Grant No.21@WTK001)supported by the Chinese Academy of Sciences President’s International Fellowship Initiative Award(Grant No.2018VCA0016)the Je Tsongkhapa Endowment for Central and Inner Asian Archaeology at the University of Arizona。
文摘The timing and mechanisms of the human occupation of the demanding high-altitude Tibetan Plateau environment are of great interest.Here,we report on our reinvestigations and dating of the Nwya Devu site,located nearly 4600 meters above sea level on the central Tibetan Plateau.A new microblade techno-complex was identified on a lower lake shore at this site,distinct from the previously reported blade tool assemblage.These two lithic assemblages were dated to 45.6±2.6 and10.3±0.5 ka using optically stimulated luminescence and accelerator mass spectrometry^(14)C methods.They represent,respectively,the earliest known Paleolithic and microlithic sites on the interior Tibetan Plateau,indicating multiple occupation episodes of hunter-gatherers during the past 45 ka.Our studies reveal that relatively stable depositional conditions and a paleoenvironment characterized by a comparatively warm climate facilitated these multiple occupations at Nwya Devu.The contemporaneous occurrence of the Upper Paleolithic blade technology on the Tibetan Plateau and most of Eurasia between 50 and 40 ka indicates rapid,large-scale dispersals of humans that profoundly affected human demography on a large scale.Combining new archaeological evidence and previously reported genetic data,we conclude that the Tibetan Plateau provided a relatively stable habitat for Upper Paleolithic hunter-gatherers,which may have contributed to the complex and multiple-origin gene pool of present-day Tibetans.
基金supported by the National Natural Science Foundation of China (Grant No. 40902013)"Strategic Priority Research Program - Climate Change:Carbon Budget and Relevant Issues" of the ChineseAcademy of Sciences (Grant No.XDA05130202)
文摘Shuidonggou site has abundant Paleolithic remains of Late Pleistocene deposition. Studying the evolution of depositional environments is essential to the comprehensive understanding of the living conditions of ancient populations. To reconstruct the depositional environment at Shuidonggou, we carried out archaeological excavations and collected systematic deposition samples at the key position of Shuidonggou Locality 2 for grain size analysis and sporopollen statistics. The environmental evolution around the Shuidonggou site generally underwent four stages at ~72-18 kaBP. During the first stage (~72-41 kaBP), the river developed with gravel and sand stratums. During the second stage (41-34 kaBP), a swamp with numerous aquatic plants formed. In the third stage (34-29 kaBP), site formation was characterized by shallow lake depositional conditions; the climate was relatively warm and humid. The marginal bank depositional conditions deteriorated during the fourth stage (29-18 kaBP), and the site underwent several dry events; the climate also became drier and colder.
文摘The paper posits that kin sociality and eusociality are derived from the handicap-care principles based on the need-based care to the handicappers from the caregivers for the self-interest of the caregivers. In this paper, handicap is defined as the difficulty to survive and reproduce independently. Kin sociality is derived from the childhood handicap-care principle where the children are the handicapped children who receive the care from the kin caregivers in the inclusive kin group to survive. The caregiver gives care for its self-interest to reproduce its gene. The individual’s gene of kin sociality contains the handicapped childhood and the caregiving adulthood. Eusociality is derived from the adulthood handicap-care principle where responsible adults are the handicapped adults who give care and receive care at the same time in the interdependent eusocial group to survive and reproduce its gene. Queen bees reproduce, but must receive care from worker bees that work but must rely on queen bees to reproduce. A caregiver gives care for its self-interest to survive and reproduce its gene. The individual’s gene of eusociality contains the handicapped childhood-adulthood and the caregiving adulthood. The chronological sequence of the sociality evolution is individual sociality without handicap, kin sociality with handicapped childhood, and eusociality with handicapped adulthood. Eusociality in humans is derived from bipedalism and the mixed habitat. The chronological sequence of the eusocial human evolution is 1) the eusocial early hominins with bipedalism and the mixed habitat, 2) the eusocial early Homo species with bipedalism, the larger brain, and the open habitat, 3) the eusocial late Homo species with bipedalism, the largest brain, and the unstable habitat, and 4) extended eusocial Homo sapiens with bipedalism, the shrinking brain, omnipresent imagination, and the harsh habitat. The omnipresence of imagination in human culture converts eusociality into extended eusociality with both perception and omnipresent imagination.