It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in t...It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogenic effects.展开更多
The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 mil...The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 million kilowatts. The purpose of the study was to determine potential and dynamic differences in debris flow susceptibility and intensity with regard to seasonal monsoon events. We analyzed this region's debris flow history by examining the effective peak acceleration of antecedent earthquakes,the impacts of antecedent droughts, the combined effects of earthquakes and droughts, with regard to topography, precipitation, and loose solid material conditions. Based on these factors, we developed a debris flow susceptibility map. Results indicate that the entire debris flow susceptibility area is 167,500 km^2, of which 26,800 km^2 falls within the high susceptibility area, with 60,900 km^2 in medium and 79,800 km^2 are in low susceptibility areas. Three of the six large hydropower stations are located within the areas with high risk of debris flows. The synthetic zonation map of debris flow susceptibility for the study area corresponds with both the investigation data and actual distribution of debris flows. The results of debris flow susceptibility provide base-line data for mitigating, assessing, controlling and monitoring of debris flows hazards.展开更多
Understanding hydrological responses to rising levels of greenhouse gases are essential for climate and impact research.It is,however,often limited by a lack of long record of observational data to provide a basis for...Understanding hydrological responses to rising levels of greenhouse gases are essential for climate and impact research.It is,however,often limited by a lack of long record of observational data to provide a basis for understanding the longterm behavior of the climate system.Integrating reconstructed data and(global climate and hydrological)model simulations will help us to better understand the variability of climate and hydrology over timescales ranging from decades to centuries.In this study,we proposed an integrated approach to study flood variability in the upper reach of the Yangtze River over the last millennium to the end of the 21st century.To accomplish this,we first drove hydrological models using the precipitation and temperature from four Global Climate Models(GCM),BCC-CSM1.1,MIROC,MRI-CGCM3,and CCSM4,to simulate daily discharge for the upper reach of the Yangtze River during the period of the last millennium(850–1849),historical period(1850–2005),and a future period(2006–2099).Then,we evaluated whether the modeled precipitation,temperature,and extreme discharge had statistical properties similar to those shown in the documented dry-wet periods,temperature anomalies,and paleoflood records.Finally,we explored the extreme discharge variability using model simulations.The results indicate that:(1)The MIROC-ESM model,differing from the other three GCM models,revealed positive temperature changes from the warm period(Medieval Climate Anomaly;MCA)to the cold period(Little Ice Age;LIA),while the temperature variability of the other models was similar to the records.(2)The BCC-CSM1.1 model performed better than the others regarding correlations between modeled precipitation and documented dry-wet periods.(3)Over most of the subbasins in the upper Yangtze River,the magnitude of extreme discharge in the BCC-CSM1.1 model results showed that there was a decrease from the MCA to the LIA period and an increase in the historical period relative to the cold period,while a future increase was projected by the four GCMs under the influence of climate change.展开更多
In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has...In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.展开更多
The contribution of areal precipitation of the catchment from Cuntan toYichang (Three Gorges area) to eight flood peaks of the Upper Yangtze River (the upper reaches ofthe Yangtze River) is diagnosed for 1998 flood se...The contribution of areal precipitation of the catchment from Cuntan toYichang (Three Gorges area) to eight flood peaks of the Upper Yangtze River (the upper reaches ofthe Yangtze River) is diagnosed for 1998 flood season. A rainfall-runoff model is employed tosimulate runoffs of this catchment. Comparison of observed and simulated runoffs shows that therainfall-runoff model has a good capability to simulate the runoff over a large-scale river and theresults describe the eight flood peaks very well. Forecast results are closely associated with thesensitivity of the model to rainfall and the calibration processes. Other reasons leading tosimulation errors are further discussed.展开更多
This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these...This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.展开更多
Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite...Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite rainfall estimates have been very important sources for precipitation information, particularly in rain gauge-sparse regions. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products 3B42, RTV5V6, and RTV7 were evaluated for their applicability to the upper Yellow and Yangtze River basins on the Tibetan Plateau. Moreover, the capability of the TMPA products to simulate streamflow was also investigated using the Variable Infiltration Capacity (VIC) semi-distributed hydrological model. Results show that 3B42 performs better than RTVSV6 and RTV7, based on verification of the China Meteorological Administration (CMA) observational precipitation data. RTVSV6 can roughly capture the spatial precipitation pattern but overestimation exists throughout the entire study region. The anticipated improvements of RTV7 relative to RTVSV6 have not been realized in this study. Our results suggest that RTV7 significantly overestimates the precipitation over the two river basins, though it can capture the seasonal cycle features of precipitation. 3B42 shows the best performance in streamflow simulation of the abovementioned satellite products. Although involved in gauge adjustment at a monthly scale, 3B42 is capable of daily streamflow simulation. RTV5V6 and RTV7 have no capability to simulate streamflow in the upper Yellow and Yangtze River basins.展开更多
Land use/land cover change (LUCC) is a focus of the research of global environmental changes. The middle and upper reaches of the Yangtze River, which are the most ecologically fragile mountainous area in China as wel...Land use/land cover change (LUCC) is a focus of the research of global environmental changes. The middle and upper reaches of the Yangtze River, which are the most ecologically fragile mountainous area in China as well as one of the areas in China with most notable LUCC, have been on the Chinese Government's list of priority areas for ecological restoration. This paper is to reveal the trend of LUCC and the ecological degradation arising from it, and to provide a basis for the future sustainable use of land resources in the region based on a detailed analysis of Yiliang County. Based on the county's land use/cover maps in 1960, 1980 and 2000 drawn with the aid of aerial photograph interpretation, field investigation and GIS based spatial-temporal data analysis, LUCC during 1960~2000 period and the ecological degradation arising from it were analyzed. Using the Markv model, the paper brings out a forecast of what the county's LUCC would be like if the county's current land use continues, as well as the reasons and countermeasures for restoring degraded ecosystems.展开更多
In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant ra...In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.展开更多
The sediment load and river sedimentation of the upper reaches of YangtzeRiver has been undergoing constant changes as complex landform, large mountain area and plentifulprecipitation make the drainage area of Yangtze...The sediment load and river sedimentation of the upper reaches of YangtzeRiver has been undergoing constant changes as complex landform, large mountain area and plentifulprecipitation make the drainage area of Yangtze River very vulnerable to watererosion and gravityerosion. Through analyzing the hydrological and sediment load statistics recorded by majorhydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annualrunoff volume and annual sediment load, wefind out that the suspended-sediment of Yangtze river hasbeen decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei HydrologicalStation on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and GaochangHydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Stationalong Yangtze River mainstream share the same experience too. But the statistics obtained atPingshan Hydrological Station on Jinshajiang River shows the sedimentload there has increased.Taking ecological construction, hydraulic engineering construction and precipitation changes intoconsideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River,Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation forfurther study of river sediment changes of the upper reaches of Yangtze River, and measures tocontrol river sedimentation.展开更多
Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the format...Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the formation of NieCueFe deposits. We describe sulphide inclusions from unique ultramafic clots within mafic xenoliths, from the mafic xenoliths themselves, and from the three silica-rich host plutons in Tongling, China. For the first time, we are able to propose a general framework model for the evolution of sulphide melts during the evolution of mafic to felsic magmas from the upper mantle to the upper crust. The model improves our understanding of the sulphide melt evolution in upper mantle to upper crust magmas, and provides insight into the formation of stratabound skarn-type FeeCu polymetallic deposits associated with felsic magmatism, thus promising to play an important role during prospecting for such deposits.展开更多
Using the daily NCEP/NCAR reanalysis dataset and the observation rainfalldata in China for the 1980-1997 period, features of severe summer rainfall over the upper reaches ofthe Yangtze River are investigated and then ...Using the daily NCEP/NCAR reanalysis dataset and the observation rainfalldata in China for the 1980-1997 period, features of severe summer rainfall over the upper reaches ofthe Yangtze River are investigated and then sources of moisture contributing to severe rainfallover eastern and western Sichuan Province (ES and WS for short) are examined with particularreference. It turns out that the severe rainfall occurring locally dominates summer rainfall overthe upper reaches of the Yangtze River. Climatological rainfall and anomalous one constitute severerainfall, but the latter accounts much for severe rainfall. The meridional moisture transportdominates the composite moisture transport on the occurrence day for ES region, while the zonal isequivalent to the meridional for WS region. Correlation between the moisture transport fluxes overthe two regions of severe rainfall and other regions, the anomaly and variation of the moisturetransport day by day during the period of severe rainfall lend a support for the conclusion that themeeting of the moisture from the West Pacific through the South China Sea (SCS) and the one fromnorthwestern China exerts a vital effect on the occurrence of severe rainfall, which can not beneglected.展开更多
The deforestation on large scale in the upper reaches of Yangtze River has caused serious problems of ecosystem and environment. Restoration of the degenerated forest ecosystems is one of the main research fields. Tak...The deforestation on large scale in the upper reaches of Yangtze River has caused serious problems of ecosystem and environment. Restoration of the degenerated forest ecosystems is one of the main research fields. Taking Gongga Mountain as an example, degeneration features and existing problems of forest ecosystems are analyzed in this paper, and the measures are also proposed.展开更多
Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided ...Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.展开更多
137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak depo...137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.展开更多
The simplicity of Topography-based hydrological model (TOPMODEL), as a way of reflecting the topographic controls on soil water storage and runoff generation, has become more attractive and more popular for land surfa...The simplicity of Topography-based hydrological model (TOPMODEL), as a way of reflecting the topographic controls on soil water storage and runoff generation, has become more attractive and more popular for land surface process study since digital elevation models (DEMs) have become widely available. In this paper, the effect of the topography index on soil water storage distribution, which is the key to TOPMODEL, is explained. Then a simple water cycle model for estimating other components of the surface water cycle is developed, which is implemented into the TOPMODEL to integrate the water cycle of the catchment. Using the output of a DEM from 100 m×100 m resolution data and a single flow direction algorithm, the index distribution function is calculated for a catchment (around 2500 km2 )in the upper reaches of the Yangtze River under different channel initiation thresholds. Finally, the daily and monthly rainfall-runoff response from 1960 to 1987 for the catchment is simulated with the TOPMODEL coupled with the simple water cycle model.展开更多
Based on data of radiation fog events in Xuanen, Hubei province, 2010, this paper analyzes the microphysical process and evolution characteristics of radiation fogs with complicated substrate in the upper and middle r...Based on data of radiation fog events in Xuanen, Hubei province, 2010, this paper analyzes the microphysical process and evolution characteristics of radiation fogs with complicated substrate in the upper and middle reaches of the Yangtze River, and compares them with findings in other areas. Results are as follows: radiation fog in Xuanen is evidently weaker in droplet number concentration and liquid water content than land fogs in other areas. Its liquid water content fluctuates obviously, 0.01g/m3 with visibility of 1,000 meters, which is quite different from that in urban areas, but similar to the Nanling Mountains. Bi-modal droplet distribution is likely to occur in Xuanen mountain radiation fog(MRF) events. Statistical analysis shows that the observed droplet size distribution can be piecewise described well by the Gamma distribution. There is a positive correlation between liquid water content, fog droplet concentration and mean radius, especially in the development and dissipation stage. Condensation growth and droplet evaporation are major processes of Xuanen MRF. The dissipation time coincided with the time when the grass temperature reached the peak value, which indicated that dew evaporation is a key role in maintaining Xuanen MRF. In the early stage of dense fog's growth, droplets with diameter of over 20 micrometers can be observed with visibility of800-1,000 m, which might be caused by the transportation of low cloud droplets to earth's surface by turbulence. Big droplets in the initial stage correspond to higher water content, leading to the higher observed value of water content of Xuanen MRF.展开更多
基金funded by the 135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-135-1703)the Science and Technology Service Network Initiative of Chinese Academy of Sciences:Ecological Risk Assessment and Protection of the Yangtze River Economic Belt(KFJ-STS-ZDTP)
文摘It is necessary to understand vegetation dynamics and their climatic controls for sustainable ecosystem management.This study examines the vegetation dynamics and the effect of climate change on vegetation growth in the pristine conditions of 58 woodland National Nature Reserves(NNRs)located in the upper Yangtze River basin(UYRB)in China which are little influenced by human activities.Changes in the normalized difference vegetation index(NDVI),precipitation,and temperature in the selected NNRs were observed and analyzed for the period between 1999 and 2015.The relationship between time-lag effect of climate and changes in the NDVI were assessed using Pearson correlations.The results showed three major trends.1)The NDVI increased during the study period;this indicates an increase in the amount of green vegetation,especially due to the warmer climate during the growing season.The NDVIs in March and September were significantly affected by the temperature of the previous months.Spring temperatures increased significantly(P<0.05)and there was a delay between climatic factors and their effect on vegetation,which depended on the previous season.In particular,the spring temperature had a delayed effect on the NDVI in summer.2)The way in which vegetation responds to climatic factors varied significantly across the seasons.Temperature had a greater effect on the NDVI in spring and summer and the effect was greater at higher altitudes.A similar trend was observed for precipitation,except for altitudes of 1000–2000 m.3)Temperature had a greater effect on the NDVI in spring and autumn at higher altitudes.The same trend was observed for precipitation in summer.These findings suggest that the vegetation found in NNRs in the upper reaches of the Yangtze River was in good condition between 1999 and 2015 and that the growth and development of vegetation in the region has not been adversely affected by climate change.This demonstrates the effectiveness of nature reserves in protecting regional ecology and minimizing anthropogenic effects.
基金supported by the National Natural Science Foundation of China (Grant No. 41661134012 and 41501012)the Taiwan Youth Visiting Scholar Fellowship of Chinese Academy of Sciences (Grant No. 2015TW2ZB0001)
文摘The upper Yangtze River region is one of the most frequent debris flow areas in China. The study area contains a cascade of six large hydropower stations located along the river with total capacity of more than 70 million kilowatts. The purpose of the study was to determine potential and dynamic differences in debris flow susceptibility and intensity with regard to seasonal monsoon events. We analyzed this region's debris flow history by examining the effective peak acceleration of antecedent earthquakes,the impacts of antecedent droughts, the combined effects of earthquakes and droughts, with regard to topography, precipitation, and loose solid material conditions. Based on these factors, we developed a debris flow susceptibility map. Results indicate that the entire debris flow susceptibility area is 167,500 km^2, of which 26,800 km^2 falls within the high susceptibility area, with 60,900 km^2 in medium and 79,800 km^2 are in low susceptibility areas. Three of the six large hydropower stations are located within the areas with high risk of debris flows. The synthetic zonation map of debris flow susceptibility for the study area corresponds with both the investigation data and actual distribution of debris flows. The results of debris flow susceptibility provide base-line data for mitigating, assessing, controlling and monitoring of debris flows hazards.
基金supported by the National Key Research and Development Program(Grant No.2017YFA0603702)the Research Council of Norway(FRINATEK Project 274310)。
文摘Understanding hydrological responses to rising levels of greenhouse gases are essential for climate and impact research.It is,however,often limited by a lack of long record of observational data to provide a basis for understanding the longterm behavior of the climate system.Integrating reconstructed data and(global climate and hydrological)model simulations will help us to better understand the variability of climate and hydrology over timescales ranging from decades to centuries.In this study,we proposed an integrated approach to study flood variability in the upper reach of the Yangtze River over the last millennium to the end of the 21st century.To accomplish this,we first drove hydrological models using the precipitation and temperature from four Global Climate Models(GCM),BCC-CSM1.1,MIROC,MRI-CGCM3,and CCSM4,to simulate daily discharge for the upper reach of the Yangtze River during the period of the last millennium(850–1849),historical period(1850–2005),and a future period(2006–2099).Then,we evaluated whether the modeled precipitation,temperature,and extreme discharge had statistical properties similar to those shown in the documented dry-wet periods,temperature anomalies,and paleoflood records.Finally,we explored the extreme discharge variability using model simulations.The results indicate that:(1)The MIROC-ESM model,differing from the other three GCM models,revealed positive temperature changes from the warm period(Medieval Climate Anomaly;MCA)to the cold period(Little Ice Age;LIA),while the temperature variability of the other models was similar to the records.(2)The BCC-CSM1.1 model performed better than the others regarding correlations between modeled precipitation and documented dry-wet periods.(3)Over most of the subbasins in the upper Yangtze River,the magnitude of extreme discharge in the BCC-CSM1.1 model results showed that there was a decrease from the MCA to the LIA period and an increase in the historical period relative to the cold period,while a future increase was projected by the four GCMs under the influence of climate change.
基金Commonweal Special Project of the Minislry of Water Resources of China, No.2007SHZ0901034 National Natural Science Foundation of China, No.40971012 Acknowledgements We are grateful to Data Center for Resources and Environmental Sciences of Chinese Academy of Sciences for providing the data of soil and to China Meteorological Administration for providing the data of precipitation.
文摘In recent years, the role of human activities in changing sediment yield has become more apparent for the construction of hydraulic engineering and water conservation projections in the Upper Yangtze River, but it has not been evaluated at the macro scale. Taking Sichuan Province and Chongqing City as an example, this paper studies the relationship between socio-economic factors and sediment yield in the Upper Yangtze River based on section data in 1989 and 2007. The results show that sediment yield is significantly correlated with population density and cultivated area, in which the former appears to be more closely related to sediment yield. Moreover, in the relation of sediment yield vs. population density, a critical value of population density exists, below which the sediment yield increases with the increase of population density and over which the sediment yield increases with the decrease of population density. The phenomenon essentially reflects the influence of natural factors, such as topography, precipitation and soil property, and some human activities on sediment yield. The region with a higher population density than critical value is located in the east of the study area and is characterized by plains, hills and low mountains, whereas the opposite is located in the west and characterized by middle and high mountains. In the eastern region, more people live on the lands with a low slope where regional soil erosion is slight; therefore, sediment yield is negatively related with population density. In contrast, in the western region, the population tends to aggregate in the areas with abundant soil and water resources which usually lead to a higher intensity of natural erosion, and in turn, high-intensity agricultural practices in these areas may further strengthen local soil erosion. It is also found that population tends to move from the areas with bad environment and high sediment yield to the areas with more comfortable environment and less sediment yield. The natural factors have greater influence on sediment yield of western region than that of eastern region. Generally, the natural factors play a dominant role on sediment yield in the Upper Yangtze River.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 40175028 and 40475045.
文摘The contribution of areal precipitation of the catchment from Cuntan toYichang (Three Gorges area) to eight flood peaks of the Upper Yangtze River (the upper reaches ofthe Yangtze River) is diagnosed for 1998 flood season. A rainfall-runoff model is employed tosimulate runoffs of this catchment. Comparison of observed and simulated runoffs shows that therainfall-runoff model has a good capability to simulate the runoff over a large-scale river and theresults describe the eight flood peaks very well. Forecast results are closely associated with thesensitivity of the model to rainfall and the calibration processes. Other reasons leading tosimulation errors are further discussed.
基金the National Natural Science Foundation of China (40671153)the Scientific Research Fund of Hunan Provincial Education Department (05C175) the Knowledge Innovation Program of Chinese Academy Sciences (KZCX2- YW-302)
文摘This paper discussed theory and methodologies of debris-flow risk assessment and established an implementation process according to indicators of debris-flow hazard degree, vulnerability, risk degree, etc. Among these methodologies, historical and potential hazard degree was comprehensively considered into hazard assessment and hazard index was presented to indicate the debris-flow hazard degree. Regarding debris-flow vulnerability assessment, its statistical data and calculating procedure were based on the hazard-degree regionalization instead of administrative divisions, which improved the assessing scientificity and precision. These quantitative methodologies integrated with Geography Information System (GIS) were applied to the risk assessment of debris flows in the upper reach of Yangtze River. Its results were in substantial agreement on investigation data and the actual distribution of debris flows, which showed that these principles and methodologies were reasonable and feasible and can provide basis or reference for debris-flow risk assessment and disaster management.
基金supported by the National Basic Research Program of China(the 973 Program,Grant No.2010CB951101)the Special Fund of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of Hohai University(Grant No.1069-50985512)the"Strategic Priority Research Program"of the Chinese Academy of Sciences(Grant No.XDA05110102)
文摘Due to the high elevation, complex terrain, severe weather, and inaccessibility, direct meteorological observations do not exist over large portions of the Tibetan Plateau, especially the western part of it. Satellite rainfall estimates have been very important sources for precipitation information, particularly in rain gauge-sparse regions. In this study, Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) products 3B42, RTV5V6, and RTV7 were evaluated for their applicability to the upper Yellow and Yangtze River basins on the Tibetan Plateau. Moreover, the capability of the TMPA products to simulate streamflow was also investigated using the Variable Infiltration Capacity (VIC) semi-distributed hydrological model. Results show that 3B42 performs better than RTVSV6 and RTV7, based on verification of the China Meteorological Administration (CMA) observational precipitation data. RTVSV6 can roughly capture the spatial precipitation pattern but overestimation exists throughout the entire study region. The anticipated improvements of RTV7 relative to RTVSV6 have not been realized in this study. Our results suggest that RTV7 significantly overestimates the precipitation over the two river basins, though it can capture the seasonal cycle features of precipitation. 3B42 shows the best performance in streamflow simulation of the abovementioned satellite products. Although involved in gauge adjustment at a monthly scale, 3B42 is capable of daily streamflow simulation. RTV5V6 and RTV7 have no capability to simulate streamflow in the upper Yellow and Yangtze River basins.
基金the result of the project(No.400610o6)funded by the National Natural Science Foundation of China.
文摘Land use/land cover change (LUCC) is a focus of the research of global environmental changes. The middle and upper reaches of the Yangtze River, which are the most ecologically fragile mountainous area in China as well as one of the areas in China with most notable LUCC, have been on the Chinese Government's list of priority areas for ecological restoration. This paper is to reveal the trend of LUCC and the ecological degradation arising from it, and to provide a basis for the future sustainable use of land resources in the region based on a detailed analysis of Yiliang County. Based on the county's land use/cover maps in 1960, 1980 and 2000 drawn with the aid of aerial photograph interpretation, field investigation and GIS based spatial-temporal data analysis, LUCC during 1960~2000 period and the ecological degradation arising from it were analyzed. Using the Markv model, the paper brings out a forecast of what the county's LUCC would be like if the county's current land use continues, as well as the reasons and countermeasures for restoring degraded ecosystems.
基金the Knowledge Innovation Program of Chinese Academy of Sciences (KZCX-SW-352)
文摘In the upper reaches of Yangtze River and other rivers of southwestern China, the debris flows develop and lead to most serious disasters because of the various landforms, complex geological structures and abundant rainfall. The distribution of debris flows has regularity in the regions with different landform, geological structure, and precipitation. The regularities of distribution of debris flows are as following: (1) distributed in transition belts of different morphologic regions; (2) distributed in the area with strong stream trenching; (3) distributed along fracture zones and seismic belts: (4) distributed in the area with abundant precipitation; (5) distribution of debris flow is azonal. The activity of abundant debris flows not only brings harm to Towns, Villages and Farmlands, Main Lines of Communication, Water-Power Engineering, Stream Channels etc., but also induces strong water and soil loss. According to the present status of debris flow prevention, the problems in disasters mitigation and soil conservancy are found out, and the key works are brought up for the future disasters prevention and soil conservancy.
文摘The sediment load and river sedimentation of the upper reaches of YangtzeRiver has been undergoing constant changes as complex landform, large mountain area and plentifulprecipitation make the drainage area of Yangtze River very vulnerable to watererosion and gravityerosion. Through analyzing the hydrological and sediment load statistics recorded by majorhydrological stations along Yangtze River since 1950s, and editing the accumulation graph of annualrunoff volume and annual sediment load, wefind out that the suspended-sediment of Yangtze river hasbeen decreasing year by year in Wulong Hydrological Station on Wujiang River, Beibei HydrologicalStation on Jialingjiang River, Lijiawan Hydrological Station on Tuojiang River and GaochangHydrological Station on Minjiang River, Yichang Hydrological Station, Cuntan Hydrological Stationalong Yangtze River mainstream share the same experience too. But the statistics obtained atPingshan Hydrological Station on Jinshajiang River shows the sedimentload there has increased.Taking ecological construction, hydraulic engineering construction and precipitation changes intoconsideration, the thesis analyses the causes for the sediment load decrease of Jialingjiang River,Tuojiang River, Minjiang River and Wujiang River and provides us both scientific foundation forfurther study of river sediment changes of the upper reaches of Yangtze River, and measures tocontrol river sedimentation.
基金financially supported by the China Geological Survey (Grant No. 12120113069900)the National Natural Science Foundation of China (Grant No. 40672045)
文摘Sulphide inclusions, which represent melts trapped in the minerals of magmatic rocks and xenoliths, provide important clues to the behaviour of immiscible sulphide liquids during the evolution of magmas and the formation of NieCueFe deposits. We describe sulphide inclusions from unique ultramafic clots within mafic xenoliths, from the mafic xenoliths themselves, and from the three silica-rich host plutons in Tongling, China. For the first time, we are able to propose a general framework model for the evolution of sulphide melts during the evolution of mafic to felsic magmas from the upper mantle to the upper crust. The model improves our understanding of the sulphide melt evolution in upper mantle to upper crust magmas, and provides insight into the formation of stratabound skarn-type FeeCu polymetallic deposits associated with felsic magmatism, thus promising to play an important role during prospecting for such deposits.
基金This paper is jointly supported by the National Natural Science Foundation of China under Grant Nos. 40375014, 40475029the National Basic Research Program of China under "973" Grant No. 2004CB418300.
文摘Using the daily NCEP/NCAR reanalysis dataset and the observation rainfalldata in China for the 1980-1997 period, features of severe summer rainfall over the upper reaches ofthe Yangtze River are investigated and then sources of moisture contributing to severe rainfallover eastern and western Sichuan Province (ES and WS for short) are examined with particularreference. It turns out that the severe rainfall occurring locally dominates summer rainfall overthe upper reaches of the Yangtze River. Climatological rainfall and anomalous one constitute severerainfall, but the latter accounts much for severe rainfall. The meridional moisture transportdominates the composite moisture transport on the occurrence day for ES region, while the zonal isequivalent to the meridional for WS region. Correlation between the moisture transport fluxes overthe two regions of severe rainfall and other regions, the anomaly and variation of the moisturetransport day by day during the period of severe rainfall lend a support for the conclusion that themeeting of the moisture from the West Pacific through the South China Sea (SCS) and the one fromnorthwestern China exerts a vital effect on the occurrence of severe rainfall, which can not beneglected.
基金Under the auspice of the knowledge innovation project of Chinese Academy of Sciences(KZCXZ-SW-319)
文摘The deforestation on large scale in the upper reaches of Yangtze River has caused serious problems of ecosystem and environment. Restoration of the degenerated forest ecosystems is one of the main research fields. Taking Gongga Mountain as an example, degeneration features and existing problems of forest ecosystems are analyzed in this paper, and the measures are also proposed.
基金The National Basic Research Program (973 program) (2002CB111506)the R&D Infrastructure and Facility Devel-opment Program (2005DKA32300)
文摘Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.
基金supported by National Natural Science Foundation of China (Grant No. 40971169,41101259)Ministry of Environmental Protectionof China (Grant No. 2009ZX07104-002-06)State Key Laboratory of Environmental Geochemistry (Grant No. SKLEG9008)
文摘137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.
基金supported by the following projects of China the National Natural Science Foundation of China under Grant Nos.40233034 and 40075019the following projects of China the National Key Program for Developing Basic Sciences G1998040900-Part 1the following projects of China KZCX2-SW-210.
文摘The simplicity of Topography-based hydrological model (TOPMODEL), as a way of reflecting the topographic controls on soil water storage and runoff generation, has become more attractive and more popular for land surface process study since digital elevation models (DEMs) have become widely available. In this paper, the effect of the topography index on soil water storage distribution, which is the key to TOPMODEL, is explained. Then a simple water cycle model for estimating other components of the surface water cycle is developed, which is implemented into the TOPMODEL to integrate the water cycle of the catchment. Using the output of a DEM from 100 m×100 m resolution data and a single flow direction algorithm, the index distribution function is calculated for a catchment (around 2500 km2 )in the upper reaches of the Yangtze River under different channel initiation thresholds. Finally, the daily and monthly rainfall-runoff response from 1960 to 1987 for the catchment is simulated with the TOPMODEL coupled with the simple water cycle model.
基金National Natural Science Foundation of China(41375138,41305120,41275151)Natural Science Foundation of Jiangsu Province,China(BK20130988)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20133228120002)Graduate Student Innovation Plan at the Universities of Jiangsu province(N0782002211)
文摘Based on data of radiation fog events in Xuanen, Hubei province, 2010, this paper analyzes the microphysical process and evolution characteristics of radiation fogs with complicated substrate in the upper and middle reaches of the Yangtze River, and compares them with findings in other areas. Results are as follows: radiation fog in Xuanen is evidently weaker in droplet number concentration and liquid water content than land fogs in other areas. Its liquid water content fluctuates obviously, 0.01g/m3 with visibility of 1,000 meters, which is quite different from that in urban areas, but similar to the Nanling Mountains. Bi-modal droplet distribution is likely to occur in Xuanen mountain radiation fog(MRF) events. Statistical analysis shows that the observed droplet size distribution can be piecewise described well by the Gamma distribution. There is a positive correlation between liquid water content, fog droplet concentration and mean radius, especially in the development and dissipation stage. Condensation growth and droplet evaporation are major processes of Xuanen MRF. The dissipation time coincided with the time when the grass temperature reached the peak value, which indicated that dew evaporation is a key role in maintaining Xuanen MRF. In the early stage of dense fog's growth, droplets with diameter of over 20 micrometers can be observed with visibility of800-1,000 m, which might be caused by the transportation of low cloud droplets to earth's surface by turbulence. Big droplets in the initial stage correspond to higher water content, leading to the higher observed value of water content of Xuanen MRF.